CHAPTER
THREE
RECURRENCE IN SPECIAL
FINSLER SPACES

1. Introduction .. 66
2. Properties of Recurrence 67
3. T^h-Recurrent Finsler Spaces 74
4. P^h-Recurrent Finsler Spaces 76
Reference ... 79
1. **INTRODUCTION:**

A generalization of the concept of recurrence was first introduced by Moor [17] who treated the recurrence of the curvature tensor R_{ijk}^h and gave some interesting results. Since then the theory of recurrent Finsler spaces has been explored by several authors. In 1971, Matsumoto [8] introduced the notion of C^h-recurrent Finsler spaces using the h-covariant derivative of the torsion tensor C_{ijk}. The purpose of the present chapter is to define S^h and T^h recurrent Finsler spaces using the h-covariant differentiation with respect to Cartan’s connection of V-curvature tensor S_{hijk} and T-tensor T_{hijk}. We have obtained conditions in order that some Finsler spaces of special kind as introduced by Matsumoto and others may become Finsler spaces of these kinds.

We consider an n-dimensional Finsler space F_n referred to a local coordinate system x^i, whose metric function $L(x,y)$ satisfies all the conditions usually imposed upon such a metric function. Now, we introduce some special Finsler spaces which will be used in the present chapter.

A Finsler space $F_n(n > 2)$ with the non-zero length C of the torsion tensor C^i is called semi-C-reducible [15], if

\[(1.1) \quad C_{ijk} = \frac{p}{n+1} (h_{ij}C_k + h_{jk}C_i + h_{ki}C_j) + \frac{q}{C^2} C_i C_j C_k,\]

where p and $q = 1 - p$ do not vanish and h_{ij} is given by [I-(7.38)].

A semi C-reducible space is of the first kind or of the second kind, according as $p \neq \frac{n+1}{2}$ or $p = \frac{n+1}{2}$ [15].
A non-Riemannian Finsler space F_n is called C^h-recurrent [8], if the $(h)hv$-torsion tensor C_{ijk} satisfies

\[(1.2) \quad C_{ijk|\ell} = k_\ell C_{ijk}\]

where k_ℓ is a covariant vector field.

The Berwald's V-connection G^i_{jk} defined by [I-(8.1)] is not, in general, independent of directional element y^i. A Finsler space in which G^i_{jk} is independent of y^i is called a Berwald's space. This space is characterized by the condition [71]

\[(1.3) \quad C_{ijk|\ell} = 0.\]

It follows from (1.4) that each Berwald's space is a Landsberg space.

2. PROPERTIES OF RECURRENCE:

For carrying out further studies under this heading, we give the following definitions.

DEFINITION (2.1):

A tensor field T_{ij} is called h-recurrent, if

\[T_{ijk} = \lambda_k T_{ij},\]

where λ_k is a covariant vector field.

DEFINITION (2.2):

A vector field T_i is called h-recurrent, if for a covariant vector, field k_h, we have

\[T_{ih} = K_{ih} T_i.\]

On contracting (1.2) by g^{ik}, we get

\[(2.1) \quad C_{ih} = k_h C_i.\]
Thus, we can state

THEOREM (2.1):

In a C^h-recurrent Finsler space the covariant vector field C_i is h-recurrent.

In general, the condition (2.1) is only a necessary condition in a C^h-recurrent Finsler space. However, there are some special Finsler spaces where this condition is necessary as well as sufficient in order that the space may be C^h-recurrent. We discuss such special Finsler spaces as under:

In 1972, Matsumoto [9] introduced the notion of C-reducible Finsler space. A non-Riemannian Finsler space $F_n (n > 2)$ is called C-reducible if the $(h)hv$-torsion tensor C_{ijk} of F_n is written in the form

\[(2.2) \quad C_{ijk} = \frac{1}{n+1} \left(h_{ij} C_k + h_{jk} C_i + h_{ki} C_j \right), \]

where C_i is a torsion vector defined by $C_i = C_{ik}$. Taking the covariant derivative of (2.2) with respect to x^1 and using [I-(7.37)], we get

\[(2.3) \quad C_{ijk|\ell} = \frac{1}{n+1} \left(h_{ij} C_{k|\ell} + h_{jk} C_{i|\ell} + h_{ki} C_{j|\ell} \right). \]

At this stage if we assume that (2.1) holds, then equation (2.3) with the help of (2.2) gives that the space is C^h-recurrent. Therefore in consequence of theorem (2.1), we have the following:

THEOREM (2.2):

A necessary and sufficient condition in order that a C-reducible Finsler space is C^h-recurrent is that the vector field C_i is h-recurrent.
The notion of C-2 like Finsler space has been introduced by Matsumoto and Numata [14]. Such a Finsler space is characterized by a special form of torsion tensor C_{ijk} given by

\begin{equation}
C_{ijk} = \frac{1}{C^2} C_i C_j C_k \quad \text{with} \quad C^2 = 0.
\end{equation}

The h-covariant derivative of (2.4) with respect to x^ℓ gives

\begin{equation}
C^2 C_{ijk|\ell} + 2C_{ijk} C^p C_{\rho|\ell} = C_i C_j C_k C_{\rho|\ell} + C_j C_k C_{i|\ell} + C_k C_i C_{j|\ell}.
\end{equation}

At this stage, we now consider $C_{\rho|\ell} = \psi C_k$, the equation (2.4) and (2.5) show that the C-2 like Finsler space is C^h-recurrent. Thus, in view of theorem (2.1), we can state:

THEOREM (2.3):

A C2-like Finsler space in C^h-recurrent if the vector field C_i is h-recurrent.

Further, in the case of semi-C-reducible Finsler space of second kind the equation (1.1) reduces to

\begin{equation}
C^2 C_{ijk} = \frac{C^2}{2} G(\ell^k \rho_i \rho_j) \left(h_{ij} C_k \right) + \frac{1-n}{2} C_i C_j C_k,
\end{equation}

where the symbol $G(\ell^k \rho_i \rho_j)$ stands for cyclic permutation of the indices i, j, k and summation. The h-covariant differentiation of (2.6) with respect to x^ℓ and application of [I-(7.37a)] gives

\begin{equation}
C^2 C_{ijk|\ell} + 2C_{ijk} C^p C_{\rho|\ell} = C^p C_{\rho|\ell} G(\ell^k \rho_i \rho_j) \left(h_{ij} C_k \right) +
\end{equation}

\begin{equation}
+ \frac{C^2}{2} G(\ell^k \rho_i \rho_j) \left(h_{ij} C_k \right) + \frac{1-n}{2} G(\ell^k \rho_i \rho_j) \left(C_i C_j C_k \right).
\end{equation}
If we now assume that $C_{i|\ell} = k_{\ell} C_{i}$, the equation (2.5) and (2.7) give that the space under consideration in C^h-recurrent. Therefore, in virtue of theorem (2.1), we can state:

THEOREM (2.4):

A semi-C-reducible Finsler space of second kind is C^h-recurrent if and only if C_{i} is h-recurrent.

We now give the following definition which is similar to the definition of C^h-recurrent Finsler space as under:

DEFINITION (2.3):

A non-Riemannian Finsler space is called S^h-or T^h-recurrent according as the v-curvature tensor S_{hijk} or the T-tensor T_{hijk} of the space satisfies the relation

\begin{equation}
S_{hijk|\ell} = \psi_{\ell} S_{hijk},
\end{equation}

or

\begin{equation}
P_{ijk|\ell} = \psi_{\ell} P_{ijk},
\end{equation}

\begin{equation}
T_{hijk|\ell} = \psi_{\ell} T_{hijk},
\end{equation}

respectively, where ψ_{ℓ} is a covariant vector field.

It has been shown by Mastumoto [8] that if F_{n} is C^h-recurrent with recurrence vector k_{ℓ}, then S_{hijk} satisfies

\begin{equation}
S_{hijk|\rho} = 2k_{\rho} S_{hijk}.
\end{equation}

This relation and (2.8) give

THEOREM (2.5):

A C^h-recurrent Finsler space is S^h-recurrent.

In a C-reducible Finsler space [9] the v-curvature tensor S_{hijk} has the following form:
(2.11) $S_{ilm} = (n+1)^{-2} \left(h_{im} C_{rl} + h_{rl} C_{im} - h_{i\ell} C_{rm} - h_{rm} C_{i\ell} \right)$,

with C_{ij} given by

(2.12) $C_{ij} = 2^{-1} C^2 h_{ij} + C_i C_j$.

On taking the h-covariant derivatives of (2.11) and (2.12) with respect to x^p, we get

(2.13) $S_{ijk\ell|p} = (n+1)^{-2} \left(h_{i\ell} C_{j\ell|p} + h_{jk} C_{i\ell|p} - h_{ik} C_{j\ell|p} - h_{j\ell} C_{ik|p} \right)$

and (2.14) $C_{ij|p} = C^r C_{r|p} h_{ij} + C_{i|p} C_j + C_i C_{j|p}$,

respectively.

At this stage, we now suppose that a C-reducible Finsler space is S^b-recurrent. Then from the relations (2.11), (2.8) and (2.13), we have

(2.15) $h_{i\ell} C_{j|p} + h_{jk} C_{i|p} - C_{i\ell|p} - h_{ik} - h_{j\ell} C_{ik|p}$

$\psi_p \left(h_{i\ell} C_{j|p} + h_{jk} C_{i|p} - h_{ik} C_{j|p} - h_{j\ell} C_{ik|p} \right)$,

where after contraction with $g^{i\ell}$ yields

(2.16) $(n-3) C_{j|p} + g^{i\ell} C_{i|p} h_{jk} = \psi_p \left[(n-3) C_{j|p} + h_{jk} g^{i\ell} C_{i\ell} \right]$.

We now contract (2.16) with g^{jk} and use (2.12) and (2.14) and get

(2.17) $C^r C_{r|p} = \frac{C^2}{2} \psi_p$.

In view of (2.12), (2.14) and (2.17), (2.16) reduces to

(2.18) $C_{i|p} C_j + C_i C_{j|p} = \psi_p C_i C_j$ \quad for \quad $n > 3$.

We now contract (2.18) with C^j which after making use of (2.17) gives

(2.19) $C_{i|p} = \frac{1}{2} \psi_p C_i$.

where we have used the fact that $C^2 \neq 0$. Conversely the relations (2.11), (2.12), (2.13), (2.14) and (2.19) give the equation (2.8). Hence, we have

THEOREM (2.6):

A C-reducible Finsler space $F_n(n > 3)$ is S^h-recurrent if and only if the vector field C^i is h-recurrent.

Theorems (2.2), (2.5) and (2.6) now yield.

THEOREM (2.7):

The necessary and sufficient condition in order that a C-reducible Finsler space $F_n(n > 3)$ is S^h-recurrent is that it is C^h-recurrent.

From theorem (2.5), we observe that in general, S^h-recurrence is only a necessary condition for a Finsler space to be C^h-recurrent. However, the theorem (2.7) shows that in a C-reducible Finsler space $F_n(n > 3)$ is S^h-recurrent is necessary as well as sufficient condition for the space to be C^h-recurrent. An $S3$-like Finsler space is characterized by

$$ (2.20) \quad S_{ijkl} = \frac{S}{(n-1)(n-2)}(h_{ik}h_{jl} - h_{il}h_{jk}). $$

In such a Finsler space, the h-covariant derivative of (2.20) after using equation [I-(7.37)], gives

$$ (2.21) \quad S_{ijkl|h} = \frac{1}{(n-1)(n-2)}S_{ijh}(h_{ik}h_{jl} - h_{il}h_{jk}), $$

which in view of (2.20) reduces to

72
(2.22) \[S_{ij\ell|\mu} = \frac{S^h}{S} S_{ijkl}, \]

provided that \(S \neq 0 \). Further from (2.20) and the fact that a Finsler space is called flat Finsler space if the \(V \)-curvature tensor \(S_{hijk} \) of the space satisfies

(2.23) \[S_{hijk} = 0. \]

Thus, it can easily be verified that an \(S3 \)-like Finsler space is flat if and only if \(S = 0 \).

Therefore, we have

THEOREM (2.8):

A non-flat \(S3 \)-like Finsler space is \(S^h \)-recurrent.

We now consider an \(S4 \)-like Finsler space which is characterized by

(2.24) \[S_{hijk} = \frac{S}{(n-2)(n-3)} (h_{ij} h_{hk} - h_{ik} h_{ij}) + \]

\[+ \frac{1}{(n-3)} (h_{ij} S_{ik} + h_{ik} S_{ij} - h_{ik} S_{ij} - h_{ij} S_{ik}). \]

The \(h \)-covariant derivative of (2.24) with respect to \(x^\ell \) after making use of equation [I-(7.37a)] gives

(2.25) \[S_{hijk|\ell} = \frac{S^\ell}{(n-2)(n-3)} (h_{ij} h_{hk} - h_{ik} h_{ij}) + \]

\[+ \frac{1}{(n-3)} (h_{ij} S_{ik|\ell} + h_{ik} S_{ij|\ell} - h_{ik} S_{ij|\ell} - h_{ij} S_{ik|\ell}). \]

At this stage, we now suppose that

(2.26) \[S_{ij} |_{\ell} = k_{\ell} S_{ij}, \]
for a covariant vector field K_{ℓ}. The contraction of (2.26) with g^{ij}
gives $S_{\nu} = k_{\nu}S$ and in view of (2.24) the relation (2.25) reduces to
$S_{\alpha\beta\gamma\delta} = k_{\alpha}S_{\beta\gamma\delta}$. Conversely (2.26) is a necessary condition for a
Finsler space to be S^{h}-recurrent with recurrence vector field K_{ℓ}.
Thus, we can state

THEOREM (2.9):

For an S^{4}-like Finsler to be S^{h}-recurrent it is necessary and
sufficient that the tensor field S_{ij} is h-recurrent.

3. **T^{h}-RECURRENT FINSLER SPACES:**

In a 2-dimensional Finsler space F_{2}, the T-tensor T_{hijk} can be
expressed in the following two forms

\begin{equation}
T_{hijk} = \phi \left(h_{hi}h_{jk} + h_{hj}h_{ki} + h_{hk}h_{ij} \right)
\tag{3.1}
\end{equation}

and

\begin{equation}
T_{hijk} = h_{hi}A_{jk} + h_{hj}A_{ik} + h_{hk}A_{ij} + h_{ij}A_{hk} + h_{hk}A_{ij} + h_{ij}A_{hk} + h_{jk}A_{i},
\tag{3.2}
\end{equation}

where ϕ is a scalar and A_{ij} is a symmetric indicatory tensor field.

Ikeda [3] studied the theory of n-dimensional Finsler spaces with
T-tensor in the form (3.1). The T-tensor of a C-reducible Finsler-
space is of the form (3.1) [10].

The form of T-tensor is a special case of form (3.2) with
$A_{ij} = \frac{1}{2}\phi h_{ij}$. Thus, the T-tensor of a C-reducible Finsler space is of
the special form (3.2). From (3.1), it can be verified that $T_{hijk} = 0$ if
and only if $\phi = 0$. For the studies under this heading we assume ϕ
to be non-vanishing. Differentiating (3.1) covariantly with respect
to x^{ℓ} and using [I-(7.37)], we get

74
(3.3) \[T_{ijk|\ell} = \phi_{|\ell} \left(h_{ji}h_{jk} + h_{ij}h_{ki} + h_{ik}h_{ij} \right). \]

By virtue of (3.1) and (3.3), we get

(3.4) \[T_{ijk|\ell} \frac{\phi}{\phi} T_{ijk}. \]

(3.4) in view of the relation (2.9) and the following definition.

DEFINITION (3.1):

A Finsler space is said to satisfy the T-condition if the T-tensor of the vanishes [11] gives

THEOREM (3.1):

A C-reducible Finsler space is T^h-recurrent, provided that it does not satisfy the T-condition.

We can also state the following in analogy of the above theorem.

THEOREM (3.2):

A two dimensional Finsler space is T^h-recurrent, provided that it does not satisfy the T-condition.

Now, we propose to discuss the T^h-recurrence, in a Finsler space $F_n(n \geq 2)$ with T-tensor of the form given by (3.2)

The h-covariant derivative of (3.2) gives

(3.5) \[T_{ijk|\ell} = h_{hi}A_{jk|\ell} + h_{ij}A_{hk|\ell} + h_{ij}A_{ik|\ell} + h_{jk}A_{ik|\ell} + h_{hk}A_{ij|\ell} + h_{ki}A_{jh|\ell}. \]

We now write $A_{jk|\ell} = \psi_{|\ell}A_{jk}$ in (3.5) and use (3.2) again and get (2.9) conversely, we now suppose that a Finsler space with its T-tensor in the form (3.2) is T^h-recurrent. Then substituting from (3.2) and (3.5) into (2.9), contracting the result thus obtained by g^{hi} and using the fact that $\ell^iA_{ijk} = 0$, we get
\[(3.6) \quad (n+3) A_{jk|\ell} + h_{jk} g^{ih} A_{ih|\ell} = \psi_{\ell} \left[(n+3) A_{jk} + h_{jk} g^{ih} A_{ih} \right].\]

Contraction of (3.5) with respect to \(g^{jk} \) gives

\[(3.7) \quad g^{ih} A_{ih|\ell} = \psi_{\ell} g^{ih} A_{ih}.\]

Thus, from (3.7) we have that \(A_{jk} \) is \(h \)-recurrent. Hence, we can state

THEOREM (3.3):

A Finsler space with its \(T \)-tensor in the form (3.2) is \(T^h \)-recurrent if and only if the tensor field \(A_{ij} \) is \(h \)-recurrent.

4. **\(P^h \)-RECURRENT FINSLER SPACES:**

In 1976, Izumi [4] introduced the notion of \(P^* \)-Finsler space. A Finsler space \(F_n (n > 2) \) with the non-zero length \(C \) of the torsion \(C^i \) is called a \(P^* \)-Finsler space, if the \((\nu)hv\)-torsion tensor of the space is written in the form

\[(4.1) \quad P_{ijk} = \lambda C_{ijk},\]

where \(\lambda (x, y) \) is a scalar function given by

\[(4.2) \quad \begin{align*}
(\text{a}) \quad \lambda &= \frac{1}{C^2} P_i C^i, \\
(\text{b}) \quad C^i &= g^{ij} C_j, \\
(\text{c}) \quad C_i &= C^j_{ij}, \\
(\text{d}) \quad P_i &= P^r_{ij} = C^r_{ij}.
\end{align*}\]

A Finsler space in which \(g_{ij} (k) = 0 \) is called a Landsberg space and such a space is characterized by the condition

\[(4.3) \quad P_{ijk} = C_{ijk|\nu} = 0.\]

Equations (4.1) and (4.3) together give
THEOREM (4.1):

A P^*-Finsler space with scalar coefficient λ is a Landsberg space if and only if $\lambda = 0$.

As an immediate consequence of (4.1) and (1.2) we can state

THEOREM (4.2):

A C^h-recurrent Finsler space with recurrence vector field k_ℓ is a Landsberg space if and only if $k_\omega = 0$.

It can be seen in [8] that a C^h-recurrent Finsler space with recurrence vector field $k_i (k_\omega \neq 0)$ satisfies the relation

(4.4) $P_{ijk|\ell} = \left(k_\ell + \frac{k_\omega k_\ell}{k_\omega} \right) P_{ijk}.$

(4.4) in view of theorem (4.2) and relation (2.8a) gives

THEOREM (4.3):

A non-Landsberg C^h-recurrent Finsler space is P^h-recurrent.

Now, we assume that a P^*-recurrent then from (4.1) and (2.8a) we can get

(4.5) $\lambda k_i C_{ijk} + \lambda C_{ijk|\ell} = \psi_{\ell} \lambda C_{ijk}.$

Which can alternatively be expressed in the following more convenient form

(4.6) $C_{ijk|\ell} = \left(\psi_{\ell} - \frac{\lambda k_i}{\lambda} \right) C_{ijk} (\lambda \neq 0).$

Therefore, theorems (4.3) and (4.1) enable us to state the following theorem.
THEOREM (4.4):

A non-Landsberg P^*-Finsler space is P^h-recurrent if and only if it is C^h-recurrent.

According to Matsumoto and Shimada [16] a Finsler space $F_n (n>2)$ is called P-reducible, if the $(v')hv$-torsion tensor P_{ijk} of F_n is written in the form

$$ (4.7) \quad P_{ijk} = \frac{1}{(n+1)} \left(P_i h_{jk} + P_j h_{ki} + P_k h_{ij} \right), $$

where P_i is given by (4.2d).

In order to study the P^h-recurrence in a P-reducible Finsler space, we take the h-covariant derivative of (4.7) and this gives

$$ (4.8) \quad P_{ijk;\ell} = \frac{1}{(n+1)} \left(h_{jk} P_{i;\ell} + h_{ki} P_{j;\ell} + h_{ij} P_{k;\ell} \right). $$

If we now assume that $P_{i;\ell} = \psi_{\ell} P_i$, then (2.8a) (4.8) and (4.7) clearly tell that the space under consideration in P^h-recurrent. Conversely, the equation (2.8a) shows that $P_{i;\ell} = \psi_{\ell} P_i$ is a necessary condition for a Finsler space to be P^h-recurrent with recurrence vector field ψ_{ℓ} and as such we can state:

THEOREM (4.5):

A P-reducible Finsler space is P^h-recurrent if and only if the vector field P_i is h-recurrent.

Since a C-reducible Finsler space is P-reducible [16] hence with the help of above theorem, we can also state:

THEOREM (4.6):

A C-reducible Finsler space is P^h-recurrent if and only if the vector field P_i is h-recurrent.
REFERENCES

[16] Matsumoto, M. and and Finsler spaces with curvature tensor P_{hijk} and S_{hijk} satisfying
