LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Different types of G-quadruplex</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>a) Hemi-protonated C.C+ base pairing, b) Diagrammatic representation of an i-motif</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>G-Quadruplex interactive compounds</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Structure of Telomestatin</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Telomerase can perform multiple rounds of repeat synthesis which involves four events: 1) DNA primer recognition, 2) RNA template alignment, 3) elongation, and 4) translocation</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>SDS-PAGE (12%) showing mNDK expression</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Agarose gel showing the quality and integrity of RNA</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>c-MYC repression with 100 µM TMPyP4 was observed using luciferase reporter assay (in Del-4 constructs, see Methods) and quantitative RT-PCR (qRT-PCR; TaqMan assay)</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>PG4 motifs mediate gene expression</td>
<td>49-50</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Validation of microarray results by quantitative RT-PCR (qRT-PCR)</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Genes suppressed on TMPyP4 treatment are up-regulated in cancer</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.5(a)</td>
<td>c-MYC repression with 100 µM TMPyP4 was observed using quantitative RT-PCR (qRT-PCR; TaqMan assay). Fold change is with respect to untreated cells</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.5(b)</td>
<td>Differential expression of genes, showing the up-regulation or down-regulation over expected signal in permuted data, after 100µM TMPyP4 treatment for 48hrs in A549 and HeLa S3 cells</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>TMPyP4 affects genes involved in cancer</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Core Promoter regions (Underlined) used for cloning in pGL2 (Promega) vectors</td>
<td>76</td>
</tr>
</tbody>
</table>
Figure 4.2 Agarose gel showing amplified promoter regions of
RAG1 (225 bp) and TK1 (186 bp)
Figure 4.3 NM23-H2 transactivates the expression of c-MYC promoter and its activation potential is abrogated in presence of TMPyP4. a) HeLa S3, b) A549, and c) H520 cells 80

Figure 4.4 Effect of NM23-H2 mutants shows consistent effect on c-MYC expression as assayed by Luciferase assay and quantitative realtime-PCR in HeLa S3 cells 81

Figure 4.5 Reduction in the expression of recombination activating gene (RAG1) (a) and thymidine kinase (TK1) (b) in presence of TMPyP4, indicating transcriptional regulation by a quadruplex element 83

Figure 4.6 Trans-activation of TK1 and RAG1 genes in presence of overexpressed NM23-H2 85

Figure 4.7 The proposed model for transcription factor activity of NM23-H2 as mediated by formation of a quadruplex structure 87

Figure 5.1 Multiple folding possibilities in G4-motifs. (A) Underlined and shaded regions indicate the guanines constituting a stem of three stacked tetrad planes and the intervening unshaded bases form loops. (B) Overlapping PG4. Shaded regions show the bases involved in each PG4 motif 92

Figure 5.2 Frequency of PG4 occurrence in cancer (C set) related genes and non-cancer (NC) related genes. Asterik (*) indicates differential frequency of TF binding site in the two sets 95

Figure 5.3 Multiple alignments of gene promoter sequences; of human, rat and mouse, using T-COFFEE software 96

Figure 6.1 Hemiprotonated cytosine–cytosine+ base pair (left panel) and schematic showing intramolecular folding of the sequence d-CCCTCCCTTTTCCCTCCC where each thymine is shown by a circle and each cytosine by a triangle (right panel) 101

Figure 6.2 UV–Vis and CD spectroscopy of the cytosine-rich oligonucleotide from c-MYC promoter at various pH 105

Figure 6.3 Non-denaturing polyacrylamide gel electrophoresis of cytosine rich 31-mer DNA from promoter site of human c-MYC at different pH in Robinson–Britton buffer. Lanes 1, 3, 6, and 8 show dT31 and lanes 2, 4, 5, and 7 the 31-mer c-MYC oligonucleotide 106
Figure 6.4 Effect of pH and ionic strength. UV melting profiles observed at pH 5.3 (solid square), 5.6 (up triangle), and 6.1 (solid circle) in 20mM sodium chloride (upper panel) and 20mM (solid square), 50mM (circle), 70mM (up triangle), and 100 mM (cross) sodium chloride at pH 5.3 (lower panel) 107

Figure 6.5 Thermodynamic analysis. (A) Plot of lnδK versus $1/T$ at pH 5.3 (up triangle), 5.6 (down triangle), and 6.1 (solid square) in 10mM sodium acetate and 20mM sodium chloride; (B) plot of lnδK versus $1/T$ at 20mM (solid square), 50mM (up triangle), 70mM (down triangle), and 100mM (cross) sodium chloride concentration in 10mM sodium acetate, pH 5.3 108

Figure 6.6 Non-denaturing polyacrylamide gel electrophoresis of cytosine-rich 31-mer DNA from promoter site of human c-myc. Wild-type (Wt), mutants (M2, M3) and control (dT31) were observed at different pH in Robinson–Britton buffer 110

Figure 6.7 Two tetraplex conformations observed by S1 nuclease digestion. Denaturing gel electrophoresis was done following S1 nuclease digestion of the 5’-fluorescein-labeled 31-mer oligonucleotide at pH 5.3 and 7.0 111

Figure 6.8 Autoradiograph of cleavage profile of cytosine rich fragment (P1) of c-MYC (B) and three mutants (C), as induced by mNdK. Sequences of oligonucleotides used for EMSA studies are shown in (B) 113-114