TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ii-iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v-viii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>ix-x</td>
</tr>
</tbody>
</table>

CHAPTER 1: REVIEW OF LITERATURE 1-27

1.1 General overview 1
1.2 Fundamentals of tetraplex/quadruplex structure 2
1.3 Small molecules interacting with quadruplex 6
1.4 Biological significance of quadruplex 9
1.5 Quadruplex interactions with proteins 13
1.6 Nucleoside diphosphate kinase: A multifunctional protein 17
1.7 Bibliography 21

CHAPTER 2: MATERIALS AND METHODS 28-46

CHAPTER 3: REGULATORY SIGNIFICANCE OF POTENTIAL G-QUADRUPLEX MOTIFS 47-74

51-82

3.1 Preface 47
3.2 Results 48
3.2.1 Analysis of microarray gene expression data, obtained in HeLa S3 cells 48
3.2.1.1 Widespread suppression of potentially quadruplex regulated genes 48
3.2.1.2 Quantitative RT-PCR validation of microarray results 51
3.2.1.3 Quadruplex regulated genes show differential expression in cancer 55
3.2.1.4 Putative motif regulated genes have widespread biological implication 55
3.2.1.5 Transcription regulatory factors expressed at 24 hrs and multiple binding partners of factors 59
3.2.1.6 Transcription regulatory factors expressed at 48 hrs and multiple binding partners of factors 60
3.2.1.7 Pathway analysis 61
3.2.2 Analysis of microarray results done at 48hrs, in HeLa S3 and A549 cells
3.2.2.1 Potential G4 regulated genes shows widespread differential expression in the presence of TMPyP4
3.2.2.2 Quadruplex regulated genes show differential expression in cancer
3.2.2.3 PG4 DNA regulated genes show role in Cell-cycle

3.3 Discussion

3.4 Bibliography

CHAPTER 4: *IN VIVO* PROBING OF QUADRUPLEX MOTIFS:
CLONING AND EXPRESSION ASSAYS 75-89

4.1 Preface 75
4.2 Results 78

4.2.1 NM23-H2 transcription regulatory function is mediated through a structured form of DNA, possibly by a quadruplex. Case study: c-MYC 78
4.2.2 Quadruplex DNA motif and/or NM23-H2-mediated regulation of thymidine kinase (*TKI*) and recombination activating (*RAG1*) genes 82

4.3 Discussion 84
4.4 Bibliography 89

CHAPTER 5: ANALYSIS OF G-QUADRUPLE PRESENCE IN
PROMOTERS OF CANCER VS. NON-CANCER GENES 90-100

5.1 Preface 91
5.2 Results 91

5.2.1 PG4-motif search algorithm and analysis 91
5.2.2 Proximal promoter has higher density of PG4 91
5.2.3 PG4 are conserved in orthologous human, mouse and rat genes 92
5.2.4 G4 associated TF binding sites are different in cancer versus non-cancer genes

5.3 Discussion

5.4 Bibliography
CHAPTER 6: CYTOSINE-RICH SEQUENCES FORM FOUR STRANDED MOTIFS IN SOLUTION, AT NEAR PHYSIOLOGICAL CONDITIONS. CASE STUDY: c-MYC

6.1 Preface 101
6.2 Results 103
 6.2.1 Confirmation of i-motif formation 103
 6.2.2 Thermodynamics of i-motif folding 103
 6.2.3 Effect of single nucleotide substitution on i-tetraplex formation 109
 6.2.4 S1 nuclease digestion confirms two conformations 109
 6.2.5 mNdK cleaves pyrimidine-rich strand from c-MYC promoter 112
6.3 Discussion 112
6.4 Bibliography 117

CHAPTER 7: SUMMARY AND CONCLUSIONS 118-121

PUBLICATIONS