CHAPTER - III
THE SEMI NORMED SPACE DEFINED
BY χ SEQUENCES

This Chapter starts with the definition of semi normed space (χ, q), followed by the analysis of some of the properties of sequence space.

3.1. PRELIMINARIES AND DEFINITIONS

Definition 3.1.1

The space consisting of all those sequences x in w such that $(k!|x_k|)^{\frac{1}{k}} \to 0$ as $k \to \infty$ is denoted by χ. In other words $(k!|x_k|)^{\frac{1}{k}}$ is a null sequence χ is called the space of chi sequences. The space χ is a metric space with the metric $d(x, y) = \left\{ \sup_{k} (k!|x_k - y_k|)^{\frac{1}{k}}, k = 1, 2, 3, \ldots \right\}$ for all $x = \{x_k\}$ and $y = \{y_k\}$ in χ.

Definition 3.1.2

The space consisting of all those sequence x in w such that $\left(\sup_{k} (|x_k|)^{\frac{1}{k}} \right) < \infty$ is denoted by Λ. In other words $\left(\sup_{k} (|x_k|)^{\frac{1}{k}} \right)$ is a bounded sequence.
Definition 3.1.3

Let \(p, q \) be semi norms on a vector space \(X \). then \(p \) is said to be stronger than \(q \) if whenever \((x_n)\) is a sequence such that \(p(x_n) \to 0 \), then also \(q(x_n) \to 0 \).

If each is stronger than the other, then \(p \) and \(q \) are said to be equivalent.

Lemma 3.1.4

Let \(p \) and \(q \) be semi norms on a linear space \(X \). Then \(p \) is stronger than \(q \) if and only if there exists a constant \(M \) such that \(q(x) \leq Mp(x) \) for all \(x \in X \).

Definition 3.1.5

A sequence space \(E \) is said to be solid or normal if \((\alpha_k x_k) \in E \) whenever \((x_k) \in E \) an for all sequences of scalars \((\alpha_k)\) with \(|\alpha_k| \leq 1 \), for all \(k \in \mathbb{N} \).

Definition 3.1.6

A sequence space \(E \) is said to be monotone if it contains the canonical pre-images of all its step spaces.

Remark

From the above two definitions, it is clear that a sequence space \(E \) is solid implies that \(E \) is monotone.

Definition 3.1.7

A sequence \(E \) is said to be convergence free if \((y_k) \in E \) whenever \((x_k) \in E \) and \(x_k = 0 \) implies that \(y_k = 0 \).
Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k < \sup p_k = G$.

Let $D = \max (1, 2^{G-1})$.

Then for $a_k, b_k \in \mathbb{C}$, the set of complex numbers for all $k \in \mathbb{N}$ we have

$$|a_k + b_k|^{\frac{1}{p_k}} \leq D \left\{ |a_k|^{\frac{1}{p_k}} + |b_k|^{\frac{1}{p_k}} \right\} \quad (1)$$

Let (X, q) be a semi normed space over the field \mathbb{C} of complex numbers with the semi norm q. The symbol $\Lambda(X)$ denotes the space of all analytic sequences defined over X. We define the following sequence spaces:

$$\Lambda(p, \sigma, q, s) = \left\{ x \in \Lambda(X) : \sup_{n,k} k^{-s} \left[q \left(\left| x_{\sigma^{(n)}(k)} \right|^{\frac{1}{p_k}} \right) \right]^{p_k} < \infty \text{ uniformly in } n \geq 0, \ s \geq 0 \right\}$$

$$\chi(p, \sigma, q, s) = \left\{ x \in \chi(X) : k^{-s} \left[q \left(\left| x_{\sigma^{(n)}(k)} \right|^{\frac{1}{p_k}} \right) \right] \rightarrow 0, \text{ as } k \rightarrow \infty, \text{ uniformly in } n \geq 0, s \geq 0 \right\}$$

3.2. MAIN RESULTS

Theorem 3.2.1

$\chi(p, \sigma, q, s)$ is a linear space over the set of complex numbers.

Proof

It is routine verification. Therefore the proof is omitted.

Theorem 3.2.2

$\chi(p, \sigma, q, s)$ is a paranormed space with
\[g^*(x) = \sup_{k \geq 1} \left\{ q^k(n) \left| x^{\sigma^+(n)} \right|^{1/k}, \text{ uniformly in } n > 0 \right\} \]

where \(H = \max \left(1, \sup_k p_k \right) \).

Proof

Clearly \(g(x) = g(-x) \) and \(g(\theta) = 0 \), where \(\theta \) is the zero sequence. It can be easily verified that \(g(x + y) \leq g(x) + g(y) \). Next \(x \to \theta, \lambda \) fixed implies \(g(\lambda x) \to 0 \). Also \(x \to \theta \) and \(\lambda \to 0 \) imply \(g(\lambda x) \to 0 \). The case \(\lambda \to 0 \) and \(x \) fixed implies that \(g(\lambda x) \to 0 \) follows from the following expressions.

\[g(\lambda x) = \left\{ \sup_{k \geq 1} q^k(n) \left| x^{\sigma^+(n)} \right|^{1/k}, \text{ uniformly in } n, m \in \mathbb{N} \right\} \]

where \(r = \frac{1}{|\lambda|^1} \). Hence \(\chi(p, \sigma, q, s) \) is a paranormed space. This completes the proof.

Theorem 3.2.3

\[\chi(p, \sigma, q, s) \cap \Lambda(p, \sigma, q, s) \subseteq \chi(p, \sigma, q, s). \]

Proof

If is routine verification. Therefore the proof is omitted.

Remark

(i) Let \(q_1 \) and \(q_2 \) be two semi norms on \(X \), we have

\[\chi(p, \sigma, q_1, s) \cap \chi(p, \sigma, q_2, s) \subseteq \chi(p, \sigma, q_1 + q_2, s); \]
(ii) If q_1 is stronger than q_2, then $\chi(p, \sigma, q_1, s) \subseteq \chi(p, \sigma, q_2, s)$;

(iii) If q_1 is equivalent to q_2, then $\chi(p, \sigma, q_1, s) = \chi(p, \sigma, q_2, s)$;

Theorem 3.2.4(i)

Let $0 \leq p_k \leq r_k$ and \(\left\{ \frac{r_k}{p_k} \right\} \) be bounded.

Then (i) $\chi(r, \sigma, q, s) \subset \chi(p, \sigma, q, s)$;

(ii) $s_1 \leq s_2$ implies $\chi(p, \sigma, q, s_1) \subset \chi(p, \sigma, q, s_2)$;

Proof (Proof of (i)),

Let $x \in \chi(r, \sigma, q, s)$

$$k^{-s} \left[q \left(\sigma^k(n) \right) \left\| x_{\sigma^n(n)} \right\| \right]^{\frac{1}{k}} \rightarrow 0 \text{ as } k \rightarrow \infty$$

Let $t_k = k^{-s} \left[q \left(\sigma^k(n) \right) \left\| x_{\sigma^n(n)} \right\| \right]^{\frac{1}{k}} \rightarrow 0$ and $\lambda_k = \frac{p_k}{r_k}$.

Since $p_k \leq r_k$, we have $0 \leq \lambda_k \leq 1$.

Take $0 < \lambda > \lambda_k$.

Define $u_k = t_k \ (t_k \geq 1)$; $u_k = 0 \ (t_k < 1)$; and

$v_k = 0 \ (t_k \geq 1)$; $v_k = t_k \ (t_k < 1)$; $t_k = u_k + v_k t_k^\lambda_k + v_k^\lambda$. Now it follows that

$$u_k^\lambda \leq t_k \text{ and } v_k^\lambda \leq v_k^\lambda$$

(i.e) $t_k^\lambda \leq t_k + v_k^\lambda$ by (4)
\[k^{-s} \left[q \left(\sigma^k(n)! \left| x_{\sigma^k(n)} \right|^{1/k} \right)^{1/k} \right] \leq k^{-s} \left[q \left(\sigma^k(n)! \left| x_{\sigma^k(n)} \right|^{1/k} \right)^{1/k} \right] \]

\[k^{-s} \left[q \left(\sigma^k(n)! \left| x_{\sigma^k(n)} \right|^{1/k} \right)^{1/k} \right] \leq k^{-s} \left[q \left(\sigma^k(n)! \left| x_{\sigma^k(n)} \right|^{1/k} \right)^{1/k} \right] \]

But \[k^{-s} \left[q \left(\sigma^k(n)! \left| x_{\sigma^k(n)} \right|^{1/k} \right)^{1/k} \right] \to 0 \text{ as } k \to \infty \text{ by (3)} \]

\[k^{-s} \left[q \left(\sigma^k(n)! \left| x_{\sigma^k(n)} \right|^{1/k} \right)^{1/k} \right] \to 0 \text{ as } k \to \infty . \]

Hence

\[x \in \chi(p, \sigma, q, s) \quad (5) \]

From (2) and (5) we get \(\chi(r, \sigma, q, s) \subset \chi(p, \sigma, q, s) \). Hence the proof.

Proof (Proof of (ii))

It is routine verification. Therefore the proof is omitted.

Theorem 3.2.5

The space \(\chi(p, \sigma, q, s) \) is solid and as such is monotone.

Proof

Let \((x_k) \in \chi(p, \sigma, q, s) \) and \((\alpha_k) \) be a sequence of scalars such that \(|\alpha_k| \leq 1 \) for all \(k \in \mathbb{N} \). Then
\[
\begin{align*}
\kappa^{-s} \left[\left(\sigma^k(n) \, |\alpha_k x_{\sigma(n)}| \right)^{\frac{1}{k}} \right]^{p_k} & \leq \kappa^{-s} \left[\left(\sigma^k(n) \, |\alpha_k x_{\sigma^k(n)}| \right)^{\frac{1}{k}} \right]^{p_k} \\
\text{for all } k \in \mathbb{N}.
\end{align*}
\]

This completes the proof.

Theorem 3.2.6

The space \(\chi(p, \sigma, q, s) \) are not convergence free in general.

Proof

The proof follows from the following example.

Example

Let \(s = 0 \); \(p_k = 1 \) for \(k \) even and \(p_k = 2 \) for \(k \) odd.

Let \(X = C \), \(q(x) = |x| \) and \(\sigma(n) = n + 1 \) for \(n \in \mathbb{N} \).

Then we have \(\sigma^2(n) = \sigma(\sigma(n)) = \sigma(n+1) = (n+1)+1 = n+2 \) and

\[
\sigma^3(n) = \sigma(\sigma^2(n)) = \sigma(n+2) = (n+2)+1 = n+3.
\]

Therefore, \(\sigma^k(n) = (n + k) \) for all \(n, k \in \mathbb{N} \). Consider the sequences \((x_k) \) and \((y_k) \)

defined as \(x_k = \left(\frac{1}{k} \right)^{k} \times \frac{1}{k!} \) and \(y_k = k^k \times \frac{1}{k!} \) for all \(k \in \mathbb{N} \).

(i.e.) \(|x_k|^k = \frac{1}{k^k} \times \frac{1}{k!} \) and \(|y_k|^k = \frac{1}{k^k} \times \frac{1}{k!} \) for all \(k \in \mathbb{N} \).
Hence \(\left(\frac{1}{n+k} \right)^{n+k} p_k \to 0 \) as \(k \to \infty \). Therefore \((x_k) \in \chi(p, \sigma) \).

But \(\left(\frac{1}{n+k} \right)^{n+k} p_k \to 0 \) as \(k \to \infty \). Hence \((y_k) \notin \chi(p, \sigma) \). Hence the space \(\chi(p, \sigma, q, s) \) are not convergence free in general. This completes the proof.