List of figures

1.1 Schematic of a tokamak plasma fusion reactor .. 4
1.2 Schematic design of ITER .. 8
1.3 A cross-section of the tokamak with the main plasma facing components.
 Cross section of fusion first wall with the fusion reaction and ion
 energies, and a cross-section of the divertor component 10
1.4 A total overview of the MAGNUM-PSI experiment at DIFFER, The
 Netherlands .. 20
1.5 Simple DC plasma torch showing components (1) cathode, (2) gas flow,
 (3) anode, (4) cooling channel, (5) plasma jet, and (6) torch operated
 in (a) transferred, and (b) non-transferred mode 23
1.6 Simple DC plasma torch showing components (1) cathode, (2) gas flow,
 (3) anode, (4) cooling channel, and (5) plasma jet with (a) axial gas
 flow stabilized, and (b) vortex gas flow stabilized 24
1.7 Photograph of a nine-ring segmented plasma torch, connected vertically to
 the CPP-IPR High Heat Flux device (plasma light is seen through the
 Teflon gaskets) ... 25

2.1 Photograph of the three different experimental systems at CIMPLE-PSI
 Laboratory, which were used to undertake the experimental studies
 reported in this thesis, the CPP-IPR High Heat Flux (HHF, at the
 left, developed under this thesis) device, the CIMPLE-PSI
 device (at centre, developed under this thesis) and the
 experimental nanoparticle reactor (at right) .. 33
2.2 Schematic representation of HHF system

2.3 Schematic of the 9 ring configuration segmented plasma torch used in HHF system, connected vertically to a vacuum chamber. The top ring is cathode; green one is the tungsten tip, bottom ring (9th ring) is anode, yellow lines for water cooling

2.4 Photograph of the 9 ring configuration segmented plasma torch used in HHF system, while in operation

2.5 Photograph of the HHF system

2.6 Schematic diagram of the 6 ring segmented plasma torch assisted nanoreactor system, including injection-section and the converging nozzle

2.7 The complete nanoreactor system

2.8 Roots and rotary vacuum pump combination, utilized to pump-down the nanoreactor system

2.9 Circuit diagram of the plasma torch

2.10 Photograph of the 80 kW thyristorized DC power supply

2.11 Feeder system for micron-sized reactant materials

2.12 Photograph of digital mass flow controllers

2.13 Vacuum furnace at CIMPLE-PSI laboratory

2.14 750 kVA diesel generator dedicated for the CIMPLE-PSI system

2.15 Photograph shows 1.33-metre focal length spectrometer, and the inset (right side bottom) shows the CCD camera

2.16 A double Langmuir probe circuit

2.17 Photograph showing reciprocating Langmuir probe drive system connected
to CIMPLE-PSI device... 58

2.18 Photograph of the 2 cm diameter calorimeter (left) and its irradiation with
argon plasma in HHF device (right)... 60

2.19 Diagrammatic representation of Abel Inversion measurements................. 60

2.20 The five isotherm classification where \(W \) is the weight adsorbed; \(P \) is
adsorbate saturated equilibrium pressure; \(P_o \) is adsorbate
saturated equilibrium vapour pressure.. 75

2.21 Illustrative representation of a nuclear reaction............................... 82

2.22 Pelletizer used for making sample pallets at NCCCM, Hyderabad............. 86

2.23 Experimental set up at NCCCM, Hyderabad for performing NRRA and
PIGE experiments... 86

3.1 Schematic of the segmented plasma torch assisted High Heat Flux device...... 92

3.2 The geometry of Abel Inversion measurements. The plasma jet is assumed
to have a circular periphery with radius \(R \), only those portions of the
pipe calorimeter which collects plasma heat are depicted here,
in grey colour.. 93

3.3 (a) Heat flux deposited on the calorimeter for different plasma input power
and argon gas flow rates, for the 9-ring torch, 20 mbar chamber pressure,
(b) Abel inverted radial heat flux profile for 20 lpm argon flow, for
three different plasma currents.. 97

3.4 Measured plasma density with different plasma current and argon flow
rates, for the 9-ring torch, at 20 mbar chamber pressure..................... 98

3.5 (a) The geometry of tungsten target exposure to the collimated plasma beam,
(b) photograph of exposed tungsten target, large micrometer particles were
seen where the plasma beam had striked the target, and (c) SEM photograph of typical melting-resolidification patterns seen on the exposed target……………………………………………………… 99

3.6 (a) Hopper crystals forms on the tungsten target plasma interaction region after 5 minutes of exposure, inset shows crystals with higher magnification, (b) polyhedral tungsten particles growing on the target peripheral region, (c) columnar hierarchical hopper microstructures after 30 minutes exposure, seen from top, and (d) the previous grains photographed from side……………………………………………………… 101

3.7 TEM image of spherulitic polycrystalline structures with nanometer level grain substructure, (b) SAED pattern from red circled area of (a), (c) STEM-HAADF image showing open spherulites (arrow points to the center of an individual spherulite), and (d) SEM image showing dumbbell spherulites (pointed with an arrow)……………………………………………………………………… 102

3.8 Engineering drawing of CPP-IPR Magnetized Plasma Experiment for Plasma Surface Interaction (CIMPLE-PSI) device, two pairs of roots vacuum pumps are employed to produce 10^{-2} mbar level pressure in the interaction region, three sets of water-cooled copper coils will produce maximum 0.45 Tesla magnetic field for plasma confinement……………………………………… 105

4.1 Diagram of the segmented plasma torch assisted experimental nanoparticle reactor system used for the synthesis experiments……………………………………… 111
4.2 X-ray diffraction patterns of (a) as received WO$_3$ feedstock, tungsten nanomaterials synthesized at the following experimental conditions

(b) 150 Ampere plasma current and 0.8 mbar pressure, (c) 250 Ampere and 0.8 mbar, (d) 350 Ampere and 0.8 mbar, (e) 150 Ampere and 20 mbar, (f) 250 Ampere and 20 mbar, (g) 350 Ampere and 20 mbar, (h) 150 Ampere and 400 mbar, (i) 250 Ampere and 400 mbar, and (j) 350 Ampere and 400 mbar. 114

4.3 X-ray diffraction patterns of tungsten nanoparticles synthesized at (a) 350 Ampere plasma current under different chamber pressure of 400 mbar, 20 mbar, and 0.8 mbar, and (b) 400 mbar chamber pressure under different plasma current of 150 Ampere, 250 Ampere, and 350 Ampere. .. 116

4.4 Rietveld refined XRD profile of the tungsten nanopowder synthesized at high plasma current, high pressure (350 Ampere/400 mbar) condition. 118

4.5 Micro-Raman spectrum of the tungsten nanoparticles synthesized at (a) 350 Ampere plasma current under different chamber pressure of 0.8 mbar, 20 mbar, and 400 mbar, and (b) 400 mbar chamber pressure, under different plasma current of 150 Ampere, 250 Ampere, and 350 Ampere. .. 120

4.6 FESEM micrographs of tungsten nanopowders, (a) prepared at 350 Ampere plasma current and 400 mbar chamber pressure, (b) few particles from the previous sample at higher magnification, c) same sample showing typically sintered particle configuration,
(d) same sample showing mesocrystal like microstructures,
(e) prepared at 150 Ampere plasma current and 400 mbar pressure, and (f) after annealing of the previous sample

4.7 FESEM micrographs of tungsten nanopowder showing (a) exotic aggregated morphology observed in the annealed sample synthesized under 150Ampere/400 mbar pressure conditions, and (b) cauliflower-like structures synthesized at 150 Ampere plasma current and 20 mbar working pressure

4.8 TEM images of tungsten nanopowders synthesized at plasma current of 350 Ampere and working pressure of (a) 400 mbar, and (b) 0.8 mbar, the inset shows the corresponding SAED patterns, (c) shows the TEM image of the first sample with higher magnification

4.9 STEM-HAADF micrographs of the tungsten nanoparticles synthesized at high pressure, high power (350 Ampere/400 mbar) synthesis conditions, (b) Energy Dispersive X-ray spectrum of the same sample, data collected from the red circle centered at the core of a particle, as shown in the HAADF micrograph in the inset, and (c) EDX spectrum obtained from the red circle concentrating on the moss like background, as shown in the HAADF micrograph in the inset

4.10 N₂ adsorption-desorption isotherm of tungsten nanopowder synthesized at (a) plasma current of 350 Ampere and a working pressure of 400 mbar,
(b) a plasma current of 350 Ampere and a working pressure of 20 mbar……..126

4.11 BJH pore size distribution plot of tungsten nanopowders synthesized with 350 Ampere plasma current and working pressure of 20 mbar and 400 mbar……………………………………………………………………………………………………….. 127

4.12 Plasma optical emission spectrum collected from the injection section, which shows tungsten atomic (365.4 nm, 368.2 nm, 370.8 nm, 371.9 nm) and ionic (373.6 nm) spectral lines…………………………………………………………. 128

5.1 FESEM micrographs of tungsten nanomaterials (a) prepared at 350 Ampere plasma current and 400 mbar chamber pressure, (b) Particle size distribution from the previous micrograph, (c) Mesocrystal like aggregated morphologies observed in 350 Ampere/400 mbar sample, (d) Cauliflower-like particle morphologies seen for 350 Ampere/20 mbar sample. TEM micrographs of tungsten nanomaterials (e) synthesized at 350 Ampere/400 mbar, and (f) 350 Ampere/20 mbar conditions. FESEM micrograph of the HHF generated tungsten micron particles, (g) skeletal/spherulitic morphologies grown at the central exposed region, and (h) polyhedral morphologies at the peripheral areas…………………………………………………………………………………. 143

5.2 (a) STEM-HAADF micrograph of tungsten nanomaterial prepared at 350 Ampere plasma current and 400 mbar chamber pressure. EDS elemental line profile scan for one nanoparticle in the previous micrograph, (b) spectrum for oxygen (K-shell), (c) spectrum for tungsten
(L-shell), and (d) spectrum for tungsten (M-shell).......................... 146

5.3 TGA curve for the 350 Ampere/400 mbar generated sample recorded
in the presence of oxygen (100 ml/ min)... 147

5.4 XPS spectra for two different tungsten superfine powder sample, produced
under 350 Ampere/400 mbar and 350 Ampere/20 mbar synthesis
conditions... 149

6.1 Schematic of the CIMPLE-PSI device... 158

6.2 Drawing of the Cu-W alloy and stainless-steel made new segmented
plasma torch (Left), one individual torch ring showing Boron
nitride inner segments, Viton O-ring and Delrin made spacer........... 160

6.3 (a) Photograph shows one double pancake unit being fabricated using a
turntable, b) casting of the same pancake using epoxy for strengthening,
(c), and d) installation of the complete electromagnet system at CPP-IPR..... 164

6.4 (a) Side view of the electromagnet system, (b) 350 kW electromagnet
power supply, c) electromagnet water cooling system, (d) axial
electromagnetic field mapping and comparison between
experimental and theoretical values, and (e) variation
of the magnetic field across the CIMPLE-PSI device....................... 166

6.5 Drawing shows how four numbers of roots-rotary vacuum pump
combinations are used for pumping down of the vacuum
chamber... 167

6.6 (a) The aperture, and (b) the target holder system of the CIMPLE-PSI device...170

6.7 Photograph of the CIMPLE-PSI device. The inset shows the Cu-W plasma
torch arrangement ... 173
6.8 Photograph of the CIMPLE-PSI during operation with helium plasma........ 174

6.9 Photograph shows the diffused helium plasma beam getting confined into a
beam and traversing beyond the second window in the presence
of an axial magnetic field... 176

6.10 Typical voltage-current curve of double Langmuir probe taken at the center
of the first window of CIMPLE-PSI.. 177

6.11 (a) Variation of helium plasma density with the magnetic field, and (b)
variation of plasma temperature with magnetic field......................... 178

6.12 Variation of plasma density with plasma torch current..................... 179

6.13 Doppler shift of the 706.74 nm helium atomic line taken under 300 Amps
plasma current and 0.4 Tesla magnetic field...................................... 179

6.14 Photograph shows a PSI experiment being carried out in the CIMPLE-PSI
device with tungsten targets. The inset shows the target holder inside
the vacuum chamber, during helium plasma irradiation experiment........ 181

6.15 Schematic shows arrangements inside the vacuum chamber for the PSI
experiment and some peripheral supporting systems........................... 182

6.16 FESEM micrographs showing tungsten-fuzz with different magnifications... 184

6.17 HRTEM micrograph of the detached tungsten-fuzz nano tendrils, and (b)
size distribution of helium nanobubbles as measured from few
HRTEM micrographs... 185

6.18 SAED pattern of the W-fuzz structures, and (b) EDX spectra of the same
material... 186