List of Figures

1.1 The solution of the KdV equation, which is a soliton (or a single pulse). ... 9
1.2 Formation of a pseudo potential.. 12

2.1 (a) The variation of dust density \(n_d \) with plasma potential \(\phi \) for \(R_0 = 0.1 \) (upper left panel). The blue (bottom) curve shows \(n_d(\phi) \) as a solution of Eqs.\((2.17)\) and \((4.30)\). The yellow (top) curve shows \(n_d \) as per the expression \((2.20)\), where \(R \) is set to \(R_0 \). The other parameters are \(M = 1.5, \mu_e = 9, \beta = 0.01, \sigma = 0.001 \) (b) The difference in these two dust densities \(\Delta n_d \) is plotted (upper right panel) for various \(R_0 \) (shown alongside the curves), other parameters being same as in the previous plot. ... 27
2.2 Formation of pseudo potential \(V \) as given by Eq.\((2.21)\) for different values of \(M \). The other parameters are \(\mu_e = 9, \beta = 0.5, \sigma = 0.001 \) .. 29
2.3 Solitary structures in \(\phi \) for warm dust with polarisation effect \((R_0 > 0)\). The blue colored curves are our results and the yellow curve (the un-numbered curve in the top frame) is for the cold dust with \(z_d \) assumed to be independent of \(\varphi_d \) [61]. The numbers indicate values of \(\sigma \) for the corresponding blue curves. The figure on the bottom shows the solitary structure in the parameter space where an equivalent solitary wave does not exist for cold dust with \(z_d \) independent on \(\varphi_d \). The other parameters in both figures are \(\mu_e = 9 \) and \(\beta = 0.5 \) .. 31

3.1 The stability regime in the \(k-q \) plane for different \(R_0 \). The arrow shows the contour line for \(C_1 C_2 = 0 \). The other parameters are \(\sigma = 0.1, \beta = 0.1, \mu_e = 9.0 \) .. 49
3.2 The unstable regime in the \(k-\mu_e \) plane for different for \(q = -1 \) (top) and \(q = 1 \) (bottom). The shaded region is where \(C_1 C_2 > 0 \) and \(k < k_c \). Different parameters are calculated self-consistently for \(T_e = 1 \text{ eV}, T_i = 0.03 \text{ eV}, T_d = 0.01 \text{ eV}, z_d = 10^5 \), and \(n_{d0} = 10^6 \text{ m}^{-3} \) .. 50
3.3 The dependence of the critical wave number \(k_c \) with \(C_1 C_2 \) (top) and \(k \) (bottom) is shown for the stability domain. Different parameters are same as in Fig.3.2. The numbers in the figure are the corresponding values of \(q \) .. 51
3.4 The first (first row) and second order (third row) rogue wave solutions
$\psi_{1,2}(\xi, \tau)$ along with the cross-sections of the amplitudes and FWHMs.
See text for details. .. 52

4.1 The structure of pseudo potential for different values of δ_i. 64
4.2 A schematic representation of the spill over of the fluid to the adjacent
cells in subsequent time steps. As the real fluid (orange colour) flows
across the grid with the velocity v, the numerical fluid element (purple
colour) advances faster than the real element causing the diffusion. . . . 70
4.3 Simulation showing spill over of the fluid into adjacent cells as one
advances in time using the upwind scheme. 71
4.4 Advection of a density profile. The blue solid line is the initial density
profile, the red dots represents the evolution of the original profile after
600 time cycle. Ideally, they both should be same. 77
4.5 The dispersion relation for pure sound wave (left) and ion-acoustic wave
with ion temperature $T_i = 0$ (right). The ’square’ boxes represent the
simulated results, while the solid lines represent analytical relations. . . 78
4.6 Formation of IA solitons with for Mach numbers $v_0 = 1.2$ 79
4.7 Formation of IA solitons with an admixture of dust for Mach numbers
$v_0 = 1.2$ and 2.0. ... 81