CHAPTER - VII
52. **INTRODUCTION:**

G-curves in a subspace of a Finsler space have been defined and studied by Rastogi and Trivedi (1972) and their differential equations have been obtained in the following form

\[(52.1) \quad G^\alpha \overset{\text{def}}{=} p^\alpha - K_h^\alpha \sec \phi_{2(\mu)} \{ t^\alpha_{(\mu)} \cos \chi_{(\mu)} -
- \frac{du^\alpha}{ds} \cos \phi_{1(\mu)} - \sum_r \xi^\alpha_{(r)} \cos \phi_{r(\mu)} + \]

\[+ Q_{(\mu)\gamma}^\alpha \frac{du^\gamma}{ds} \sin \chi_{(\mu)} \frac{1}{K_h^\alpha} \} = 0,\]

where $\phi_{1(\mu)}$, $\phi_{2(\mu)}$ and $\phi_{r(\mu)}$ are the angles which the unit vector $\omega_{(\mu)}^i$ makes with dx^i/ds, q and $\eta_{(i)}^i$, respectively and $\chi_{(\mu)}$ is the angle between $\omega_{(\mu)}^i$ and $\lambda_{(\mu)}^i$.
Writing

\begin{equation}
D^a_{\beta y} = g_{\beta y} \cdot K^*_h \sec \phi_{2(\mu)} t^*_{(\mu)} \cos \chi^*_{(\mu)} - \frac{du^a}{ds} \cos \phi_{(\mu)} + Q^*_{(\mu)\delta} \frac{du^\delta}{ds} \sin \chi^*_{(\mu)}/K^*_h - \sum_r \xi^a_r \cos \phi_{r(\mu)}.
\end{equation}

and

\begin{equation}
R^a_{\beta y} = \Gamma^a_{\beta y} - D^a_{\beta y}.
\end{equation}

Rastogi and Trivedi (1973) defined the \(G \)-covariant derivative of a mixed tensor \(T^\alpha_{\beta_1 \beta_2} \) as follows:

\begin{equation}
T^\alpha_{\beta_1 \beta_2} = \partial_\gamma T^\alpha_{\beta_1 \beta_2} - (\partial_\delta T^\alpha_{\beta_1 \beta_2}) \partial^\gamma T^\delta
\end{equation}

In the present chapter we have used equation (52.4) to define the \(G \)-Lie derivative of a mixed tensor in a Finsler
space F_m. We have also defined G-Lie derivative of the coefficient of connection $\Gamma^\alpha_{\beta\gamma}$ and the coefficient of connection $R^\alpha_{\beta\gamma}$. We have obtained some commutation formulae in a Finsler space. We have also defined and studied G-motion, G-correspondence, G-conformal motion, G-affine motion, special affine motion and special G-affine motion in a Finsler space.

53. **G-LIE DERIVATIVE**

Let us consider an infinitesimal coordinate transformation of the type

\[(53.1) \quad \bar{u}^\alpha = u^\alpha + v^\alpha(u)dt,\]

and

\[(53.2) \quad \bar{u}^{\alpha\beta} = u^{\alpha\beta} + (\partial_\beta v^\alpha)u^\beta dt.\]

Corresponding to these the Lie-derivative of the metric tensor is given by (Rund, 1959),

\[(53.3) \quad D^L g_{\alpha\beta} = g_{\alpha\beta\gamma} v^\gamma + (\partial_\delta g_{\alpha\beta}) v^\delta_{\beta} u^\gamma + g_{\alpha\gamma} v^\gamma_{\beta} + g_{\alpha\beta} v^\gamma_{\alpha}.\]
where

\begin{equation}
(53.4) \quad g_{\alpha \beta \gamma} = \partial_\gamma g_{\alpha \beta} - (\partial_\delta g_{\alpha \beta})(\partial_\gamma G^{\delta})
\end{equation}

\[-\Gamma^*_{\alpha \gamma} g_{\delta \beta} - \Gamma^*_{\gamma \beta} g_{\alpha \delta}. \]

since we know that

\begin{equation}
(53.5) \quad g_{\alpha \beta \gamma} = \partial_\gamma g_{\alpha \beta} - (\partial_\delta g_{\alpha \beta})(\partial_\gamma G^{\delta})
\end{equation}

\[-R^*_{\alpha \gamma} g_{\delta \beta} - R^*_{\gamma \beta} g_{\alpha \delta}, \]

therefore using (52.3), (53.4) and (53.5) in (53.3) we obtain on simplification

\begin{equation}
(53.6) \quad D g_{\alpha \beta} = v^\gamma (g_{\alpha \beta \gamma} - g_{\delta \beta} D^*_{\alpha \gamma} - g_{\alpha \delta} D^*_{\gamma \beta}) + \\
+ (\partial^\gamma g_{\alpha \beta}) u^\gamma (v^\delta + v^e D_{\epsilon \gamma}^* \gamma) + \\
+ (v^\gamma + v^e D_{\epsilon \gamma}^* \gamma) g_{\alpha \gamma} + (v^\gamma + v^e D_{\epsilon \alpha}^* \gamma) g_{\beta \gamma},
\end{equation}

which when simplified, yields

\begin{equation}
(53.7) \quad D g_{\alpha \beta} = v^\gamma (g_{\alpha \beta \gamma} + (\partial^\gamma g_{\alpha \beta}) u^\gamma (v^\delta + v^e D_{\epsilon \gamma}^* \gamma) \\
+ g_{\alpha \gamma} v^\gamma + g_{\beta \gamma} v^\gamma.
\end{equation}
Now, we define the G-Lie derivative of the metric tensor as follows:

\[
\overline{\partial}_{\dot{L}} g_{\alpha\beta} \overset{\text{def}}{=} D_{\dot{L}} g_{\alpha\beta} - v^\gamma u^\alpha D_\gamma^* (\partial_\delta g_{\alpha\beta}),
\]

which can also be written as

\[
\overline{\partial}_{\dot{L}} g_{\alpha\beta} \overset{\text{def}}{=} v^\gamma g_{\alpha\beta\gamma} + (\partial_\delta g_{\alpha\beta}) u^\gamma v^\delta_\beta + g_{\alpha\gamma} v^\gamma_\beta - g_{\gamma\beta} v^\gamma_\alpha.
\]

Now, we define the G-Lie derivative of the covariant vector \(\omega_\alpha \) and contravariant vector \(y^\alpha \) as follows:

\[
\overline{\partial}_{\dot{L}} \omega_\alpha \overset{\text{def}}{=} \omega_{\alpha\beta} v^\beta + \omega_\beta v^\beta_\alpha + \quad (\partial_\delta \omega_\alpha) u^\gamma v^\delta_\beta
\]

and

\[
\overline{\partial}_{\dot{L}} y^\alpha \overset{\text{def}}{=} y^\alpha_{\alpha\beta} v^\beta - y^\beta v^\beta_\alpha + (\partial_\delta y^\alpha) u^\gamma v^\delta_\beta.
\]

On the basis of these definitions we define the G-Lie derivative of a mixed tensor
\[T^{a_1, a_r}_{\beta_1, \beta_r} \quad \text{as follows} \]

\[
(53.12) \quad \overline{D} T^{a_1, a_r}_{\beta_1, \beta_r} \overset{\text{def}}{=} T^{a_1, a_r}_{\beta_1, \beta_r} v^\gamma + \\
+ \left(\partial_\delta T^{a_1, a_r}_{\beta_1, \beta_r} \right) v^\delta_{\beta_r} u^\gamma - \\
- \sum_{p=1} T^{a_1, a_{p+1} a_r}_{\beta_1, \beta_r} v^{a_p}_{\beta_p} + \\
+ \sum_{q=1} T^{a_1, a_r}_{\beta_1, \beta_q} \delta_{\beta_q \beta_1} v^{\delta}_{\beta_q}
\]

Now, to define the G-Lie derivative of the coefficient of connection \(\Gamma^{a}_{\beta r}(u, u') \), we shall use the definition of its Lie derivative (Rund, 1959),

\[
(53.13) \quad D \Gamma^{a}_{\beta r} = v^\alpha_{\beta r} + K^a_{\beta r \delta} v^\delta + \left(\partial_\delta \Gamma^a_{\beta r} \right) v^\delta_{\beta_r} G^e - \\
\]

where

\[
(53.14) \quad K^a_{\beta r \delta} = \partial_\delta \Gamma^a_{\beta r} - \left(\partial_\delta \Gamma^a_{\beta r} \right) \partial_\delta G^e - \\
- \partial_\delta \Gamma^a_{\beta r} + \left(\partial_\delta \Gamma^a_{\beta r} \right) \partial_\delta G^e + \\
+ \Gamma^*_{\beta r} G^e - \Gamma^*_{\beta r} \Gamma^*_{\beta r} \delta e
\]

[187]
and

\[(53.15) \quad v^\alpha_{\beta\gamma} = \partial_\beta \partial_\gamma v^\alpha + (\partial_\gamma \Gamma^\alpha_{\beta\delta}) v^\delta + \Gamma^\alpha_{\delta\beta} \partial_\gamma v^\delta - (\delta_e \Gamma^\alpha_{\delta\beta}) \Gamma^e_{\alpha\gamma} u^\theta v^\delta + \]

\[+ \Gamma^\alpha_{\beta\gamma} \partial_\beta v^\delta - \Gamma^\alpha_{\delta\gamma} \partial_\delta v^\alpha + \]

\[+(\Gamma^\alpha_{\delta\gamma} \Gamma^e_{\beta\delta} - \Gamma^\alpha_{\delta\gamma} \Gamma^e_{\beta\delta}) v^\delta.\]

since equation (53.15) can be expressed as

\[(53.16) \quad v^\alpha_{\beta\gamma} = v^\alpha_{\beta\gamma} + v^\delta D^\alpha_{\delta\gamma} + v^\delta D^\alpha_{\delta\beta} + \]

\[+ v^\delta (D^\alpha_{\delta\beta} \Gamma^\delta_{\epsilon\gamma} - D^\alpha_{\delta\epsilon} \Gamma^\delta_{\epsilon\beta} - D^\alpha_{\delta\epsilon} \Gamma^\delta_{\epsilon\beta}) - D^\alpha_{\delta\epsilon} \Gamma^\delta_{\epsilon\beta} - v^\delta D^\delta_{\epsilon\gamma} + v^\epsilon D^\epsilon_{\epsilon\gamma} D^\alpha_{\delta\beta},\]

therefore by virtue of equations (53.13) and (53.16) we define

\[(53.17) \quad \begin{array}{c}
\overline{D} \Gamma^\alpha_{\beta\gamma} \quad \text{def} \quad \overline{D} \Gamma^\alpha_{\beta\gamma} - v^\delta D^\alpha_{\delta\beta\gamma} - v^\delta D^\alpha_{\delta\beta\gamma} - v^\delta D^\alpha_{\delta\beta\gamma} - \\
\end{array}

\[+ v^\delta D^\delta_{\epsilon\gamma} + v^\delta D^\delta_{\epsilon\gamma} - v^\delta D^\delta_{\epsilon\gamma} D^\alpha_{\delta\beta} - \]

[188]
\[-v^\delta D^e_{\delta \beta} \Gamma^e_{\epsilon} + v^\theta D^e_{\theta \epsilon} u^e_\delta \Gamma^e_{\beta} +
\]

\[+ v^\delta D^e_{\epsilon \beta} \Gamma^e_{\delta} + v^\delta D^e_{\epsilon \alpha} \Gamma^e_{\delta} ,
\]

which can be written as

(53.18) \[\overline{D}_{\beta} \Gamma^e_{\epsilon} \overset{\text{def}}{=} v^\alpha_{\beta \epsilon} + K^\alpha_{\beta \delta} v^\delta + (\partial^\delta_{\beta} \Gamma^e_{\epsilon}) v^\delta_{\epsilon} u^e_{\epsilon} .\]

Now, using equations (52.3)(53.12) and (53.18) we define

(53.19) \[\overline{D}^e_{\epsilon} \overset{\text{def}}{=} v^\alpha_{\beta \epsilon} + K^\alpha_{\beta \delta} v^\delta +
\]

\[+(\partial^\delta_{\beta} \Gamma^e_{\epsilon}) v^\delta_{\epsilon} u^e_{\epsilon} - D^e_{\epsilon \beta} v^\delta +
\]

\[+ D^e_{\epsilon} v^\alpha_{\beta \epsilon} - D^e_{\epsilon \beta} v^\alpha_{\beta \epsilon} -
\]

\[- D^e_{\epsilon} v^\alpha_{\beta \epsilon} - (\partial^\alpha_{\beta} D^e_{\epsilon}) u^e_{\epsilon} v^\epsilon_{\epsilon} .\]

54. **SOME COMMUTATION FORMULAE** :

Now, we shall study some commutation formulae arising by the G-Lie derivative and other derivatives. Differentiating

[189]
equation (53.11) partially with respect to \(u^e \), we get

\[
(54.1) \quad \partial_e^i (D_L y^a) = (\partial_e^i y^a) v^\beta \iiota (\partial_e^i \partial_\beta y^a) v_\beta^\delta u^\delta + \]

\[
+ (\partial_\delta^i y^a) v_\beta^\delta (\partial_e^i u^\beta) - v_\beta^\alpha \partial_e^i y^\alpha.
\]

The G-Lie derivative of \((\partial_e^i y^a)\) is given by

\[
(54.2) \quad \overline{D}_L (\partial_e^i y^a) = v^\beta (\partial_e^i y^a) \iota_{\beta} + (\partial_\delta^i \partial_e^i y^a) v_\beta^\delta u^\delta
\]

\[
+ (\partial_\delta^i y^a) v_\beta^\delta - v_\beta^\alpha (\partial_e^i y^\alpha).
\]

From equations (54.1) and (54.2) we obtain

\[
(54.3) \quad \partial_e^i (D_L y^a) - \overline{D}_L (\partial_e^i y^a) = v^\beta [(\partial_e^i y^a) \iota_{\beta} - (\partial_e^i y^a) \iota_{\beta}]
\]

\[
= v^\beta [(\partial_\delta^i y^a) R_\iota^\delta + y^\gamma \partial_e^i R_\iota^\gamma]
\]

Hence,

Theorem (54.1)

The commutation formula arising from the partial derivative and G-Lie derivative for the contravariant vector \(y^a \) is given by (54.3).
Similarly for a covariant vector \(\omega_\alpha \) we obtain

Theorem (54.2)

The commutation formula for the covariant vector \(\omega_\alpha \) is given by

\[
(54.4) \quad \partial_e (\overline{D} \omega_\alpha) - \overline{D} (\partial_e \omega_\alpha) = \nu^\beta [(\partial_\delta \omega_\alpha) R_{\epsilon \beta}^\delta - \omega_\delta \partial_\epsilon R_{\alpha \beta}].
\]

Let \(B(u,u') \) be an arbitrary covariant vector field such that its inner product with the tensor \(T^{\omega}(u,u') \) is given by

\[
(54.5) \quad y^\alpha (u,u') \overset{\text{def}}{=} T^{\alpha \beta}(u,u')B_\beta(u,u').
\]

Substituting for \(y^\alpha \) from equation (54.5) in equation (54.3) and using equation (54.4) we obtain

\[
(54.6) \quad B_\beta \left[\partial_e (\overline{D} T^{\alpha \beta}) - \overline{D} (\partial_e T^{\alpha \beta}) - T^{\alpha \delta} \nu^\tau \partial_\epsilon R_{\delta \tau}^\beta - \nu^\tau (\partial_\delta T^{\alpha \beta}) R_{\epsilon \gamma}^\delta - \nu^\tau T^{\gamma \delta} \partial_\epsilon R_{\alpha \delta}^\gamma \right] = 0.
\]
since B_{β} is arbitrary, we have

Theorem (54.3)

The commutation formula for a second order contravariant tensor $T^{a\beta}$ is given by

\[
\partial_e^c (\bar{D}T^{a\beta}) - \bar{D}(\partial_e^c T^{a\beta})
= [T^\alpha{}^\delta \partial_e^c R^{*\beta}_{\delta\gamma} + (\partial_e^c T^{a\beta}) R^{*\delta}_{e\gamma} + \\
+ T^{s\beta} \partial_e^c R^{*a}_{\delta\gamma}] \nu^\gamma.
\]

Similarly for a covariant tensor we have

Theorem (54.4)

The commutation formula for the covariant tensor $T_{a\beta}$ of order 2 is given by

\[
\partial_e^c (\bar{D}T_{a\beta}) - \bar{D}(\partial_e^c T_{a\beta})
= \nu^\gamma [(\partial_e^c T_{a\beta}) R^{*\delta}_{e\gamma} - T_{b\delta} \partial_e^c R^{*\delta}_{a\gamma} - \\
- T_{a\delta} \partial_e^c R^{*b}_{e\gamma}].
\]

[192]
These formulae can easily be extended for covariant and contravariant tensors of any order. Thus in consequence of these theorems we may establish

Theorem (54.5)

The commutation formula for the mixed tensor $T_{\beta_1...\beta_r}^{\alpha_1...\alpha_r} (u,u')$ is given by

\[(54.9) \quad \partial_\gamma^L (\overline{D} T_{\beta_1...\beta_r}^{\alpha_1...\alpha_r}) - \overline{D} (\partial_\gamma^L T_{\beta_1...\beta_r}^{\alpha_1...\alpha_r}) = V^\gamma [(\partial_\delta^L T_{\beta_1...\beta_r}^{\alpha_1...\alpha_r}) R_{\gamma \delta}^* +

\sum_{p=1}^r T_{\beta_1...\beta_r}^{\alpha_1...\alpha_p} \delta_{\gamma \delta}^p + \cdots].

\[\partial_\gamma^L R_{\gamma \delta}^* - \sum_{q=1}^s T_{\beta_1...\beta_r}^{\alpha_1...\alpha_q} \delta_{\gamma \delta}^q \partial_\gamma^L R_{\gamma \delta}^*].\]

When the right hand side of equation (54.9) vanishes, the partial derivative and G-Lie derivative of a mixed tensor commute.

Similarly we may obtain commutation formulae arising from the G-covariant derivative and G-Lie derivative.
thus we have

Theorem (54.6)

The commutation formula arising from the G-covariant derivative and G-Lie derivative of a mixed tensor is given by

\begin{equation}
(54.10) \quad \overline{D}(T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_s}}) - (\overline{D}T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_s}})_{\underline{\beta}} \\
= v^\gamma [\sum_{p=1}^r T_{\overset{\alpha_1,\ldots,\alpha_p,\ldots,\alpha_r}{\beta_1,\ldots,\beta_p}} J_{\underline{\beta\gamma\delta}}^p - \\
- (\partial_0 T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_r}}) J_{\underline{\beta\gamma\delta}}^0 u^\gamma - \\
- \sum_{q=1}^s T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_q,\ldots,\beta_s}} J_{\underline{\beta\gamma\delta}}^q v^\gamma - \\
\hspace{1cm} + v_{\underline{\beta\gamma\delta}}^0 u_{\underline{\beta\gamma\delta}} [\partial_0 T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_r}} R_{\underline{\beta\gamma\delta}}^0 + \\
\hspace{1cm} + \sum_{p=1}^r T_{\overset{\alpha_1,\ldots,\alpha_p,\ldots,\alpha_r}{\beta_1,\ldots,\beta_p}} \partial_0 R_{\underline{\beta\gamma\delta}}^{p\gamma} - \\
\hspace{1cm} - \sum_{q=1}^s T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_q,\ldots,\beta_s}} \partial_0 R_{\underline{\beta\gamma\delta}}^{q\gamma} + \\
\hspace{1cm} + \sum_{p=1}^r T_{\overset{\alpha_1,\ldots,\alpha_p,\ldots,\alpha_r}{\beta_1,\ldots,\beta_p}} v_{\underline{\beta\gamma\delta}}^p - \\
\hspace{1cm} - \sum_{q=1}^s T_{\overset{\alpha_1,\ldots,\alpha_r}{\beta_1,\ldots,\beta_q,\ldots,\beta_s}} v_{\underline{\beta\gamma\delta}}^q]
\end{equation}

[194]
where

\[(54.11) \quad J^\alpha_{\beta\gamma} = (\partial_\gamma R^\alpha_{\rho\gamma} - \partial^\rho e R^{\alpha\rho}_{\beta\gamma} \partial^e_\delta G^e) -
\]

\[- (\partial_\gamma R^\alpha_{\beta\delta} - \partial^\delta e R^{\alpha\delta}_{\beta\gamma} \partial^e_\gamma G^e) \]

\[+ R^{\alpha\delta}_{\epsilon\delta} R^{\epsilon\gamma}_{\beta\gamma} - R^{\alpha\delta}_{\epsilon\gamma} R^{\epsilon\gamma}_{\beta\gamma}. \]

55. **G-MOTION IN A FINSLER SPACE**:

The point transformations (53.1) and (53.2) are said to define a G-motion in a Finsler space if and only if

\[(55.1) \quad \bar{D}g_{\alpha\beta} = 0. \]

Since we know that for such transformation to be a motion (Rund, 1959);

\[(55.2) \quad Dg_{\alpha\beta} = 0. \]

therefore by virtue of equation (53.8) we obtain

Theorem (55.1)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be a motion as well as
G-motion is that

\[(\partial^\gamma_{\alpha} g_{\alpha\beta}) v^\gamma D^\delta_{\gamma e} u^e = 0.\]

We shall call a vector \(v\) to be a G-killing if it satisfies

\[v^\gamma g_{\alpha\beta} + (\partial^\gamma_{\alpha} g_{\alpha\beta}) u^\gamma v^{\delta}_{\beta} + g_{\alpha\gamma} v^\gamma_{\beta} + g_{\gamma\beta} v^\gamma_{\alpha} = 0.\]

The equation (55.4) will be called G-killing equation.

From the definition of a G-killing vector and G-motion in a Finsler space we obtain

Theorem (55.2)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be a G-motion in a Finsler space \(F_m\) is that the vector \(v\) be a Killing vector.

Using equation (53.3) and (53.9) in (53.8) we get

\[v^\gamma g_{\alpha\beta} + (\partial^\gamma_{\alpha} g_{\alpha\beta}) u^\gamma v^{\delta}_{\beta} + g_{\alpha\gamma} v^\gamma_{\beta} + g_{\gamma\beta} v^\gamma_{\alpha} =
\]

\[= g_{\alpha\beta} v^\gamma + (\partial^\gamma_{\alpha} g_{\alpha\beta}) v^{\delta}_{\beta} u^\gamma + g_{\alpha\gamma} v^\gamma_{\beta} +
\]

\[+ g_{\gamma\beta} v^\gamma_{\alpha} - v^\gamma u^e D^\delta_{\gamma e} (\partial^\gamma_{\alpha} g_{\alpha\beta}).\]
which on simplification yields

Theorem (55.3)

The necessary and sufficient condition for a vector \(u \) to be a killing or a G-Killing vector is given by

\[
(55.6) \quad v^\gamma g_{\alpha \beta |\gamma} + 2C_{\alpha \beta \delta} v^\delta u^{\gamma} + g_{\alpha \gamma} v^\gamma_{|\beta} +
+ g_{\gamma \beta} v^\gamma_{|\alpha} + 2C_{\alpha \beta \delta} D^\delta_{\gamma \epsilon} v^\gamma u^{\epsilon} = 0
\]

or

\[
(55.7) \quad v_{\alpha \beta} + v_{|\beta \alpha} + 2C_{\alpha \beta \gamma} v^\gamma_{|\delta} u^{\delta} -
- 2C_{\alpha \beta \gamma} v^\delta u^{\epsilon} D^\gamma_{\delta \epsilon} = 0,
\]

respectively, where \(C_{\alpha \beta \gamma} \overset{\text{def}}{=} \frac{1}{2} \partial^{\gamma} g_{\alpha \beta} \).

The condition that the infinitesimal point transformation along the vector \(\rho v \) to be a G-motion in \(F_m \) is that

\[
\rho v^\gamma g_{\alpha \beta |\gamma} + (\partial^\gamma_\delta g_{\alpha \beta}) u^{\gamma} (\rho v^\delta)_{|\gamma} + g_{\alpha \gamma} (\rho v^\gamma)_{|\beta} +
+ g_{\alpha \beta} (\rho v^\gamma)_{|\alpha} = 0,
\]

[197]
which on simplification reduces to

\[(55.8) \quad \rho (v^\gamma g_{\alpha \beta \gamma} + 2 C_{\alpha \beta \delta} u^\gamma v^\delta + g_{\alpha \gamma} v^\gamma_{|\beta} + g_{\alpha \beta} v^\gamma_{|\gamma}) +
+ 2 C_{\alpha \beta \delta} u^\gamma \rho_{|\gamma} v^\delta + \rho_{|\beta} v^\alpha + \rho_{|\alpha} v^\beta = 0.\]

If the infinitesimal point transformation along the vector \(v\) is also a G-motion, equation (55.7) reduces to

\[(55.9) \quad 2 C_{\alpha \beta \delta} u^\gamma \rho_{|\gamma} v^\delta + \rho_{|\beta} v^\alpha + \rho_{|\alpha} v^\beta = 0.\]

One of the solutions of (55.8) is \(\rho = \text{constant}\). Hence in analogy with a result by Yano, (1955, p. 49), we can easily state that two infinitesimal G-motion cannot have the same trajectories.

56. **G-CORRESPONDENCE**:

If \(F_m\) and \(\bar{F}_m\) be two Finsler spaces, we say that they are in G-correspondence if they satisfy

\[(56.1) \quad R^*_{\beta \gamma} = R^*_{\beta \gamma} + \frac{1}{2} A^a_{\beta} \partial_\gamma (\log \phi) + \frac{1}{2} A^a_{\gamma} \partial_\beta (\log \phi),\]

where \(\phi\) is a scalar quantity, \(R^*_{\beta \gamma}\) and \(\bar{R}^*_{\beta \gamma}\) are G-connections in \(F_m\) and \(\bar{F}_m\) respectively and \(A^a_\beta = \partial_\beta u^a\).
Since equation (53.9) can be written as

\[
(56.2) \quad \bar{D}_L g_{\alpha \beta} = \nu^\gamma (\partial_\gamma g_{\alpha \beta} - \partial_\delta g_{\alpha \beta} \partial_\gamma G^\delta - g_{\alpha \beta} R^*_{\alpha \gamma} - g_{\alpha \delta} R^*_{\gamma \beta})
\]

\[+ (\partial^\gamma g_{\alpha \beta}) u^\nu (\partial_\gamma v^\delta - (\partial_\epsilon v^\delta)(\partial^\gamma G^\epsilon) + v^\epsilon R^*_{\epsilon \gamma}) + \]

\[+ g_{\alpha \beta} (\partial_\nu v^\gamma - (\partial_\epsilon v^\gamma)(\partial_\nu G^\epsilon) + v^\epsilon R^*_{\epsilon \nu}) \]

\[+ g_{\nu \beta} (\partial_\alpha v^\gamma - (\partial_\epsilon v^\gamma)(\partial_\alpha G^\epsilon) + v^\epsilon R^*_{\epsilon \alpha}), \]

therefore by virtue of equation (56.1) it reduces to

\[
(56.3) \quad \bar{D}_L g_{\alpha \beta} = \nu^\gamma (\partial_\gamma g_{\alpha \beta}) - \nu^\gamma (\partial_\delta g_{\alpha \beta}) (\partial_\gamma G^\delta) +
\]

\[+ (\partial^\gamma g_{\alpha \beta}) u^\nu (\partial_\gamma v^\delta - (\partial_\epsilon v^\delta)(\partial^\gamma G^\epsilon) + v^\epsilon R^*_{\epsilon \gamma}) + \]

\[+ (\partial_\nu v^\gamma) g_{\alpha \gamma} - (\partial_\epsilon v^\gamma)(\partial_\nu G^\epsilon) g_{\alpha \gamma} + (\partial_\alpha v^\gamma) g_{\nu \beta} \]

\[- (\partial_\epsilon v^\gamma)(\partial_\alpha G^\epsilon) g_{\nu \beta} + v^\epsilon (\partial^\gamma g_{\alpha \beta}) u^\nu \]

\(- \frac{1}{2} A^\delta_\epsilon \partial_\gamma (\log \phi) - \frac{1}{2} A^\delta_\epsilon \partial_\epsilon (\log \phi). \)

Equation (56.3) on simplification yields

\[
(56.4) \quad \bar{D}_L g_{\alpha \beta} = \frac{1}{\phi} \bar{D}_L g_{\alpha \beta},
\]

[199]
Hence,

Theorem (57.1)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be conformal as well as G-conformal motion in F_m is that

$$v^\gamma u^e D_{\gamma e}^\delta (\partial_\delta g_{\alpha \beta}) = (\phi - \psi) g_{\alpha \beta}.$$

from (53.8) and (57.2) we have

Theorem (57.2)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be G-conformal motion in F_m is that the Lie derivative of $g_{\alpha \beta}$ is given by

$$D^L_L g_{\alpha \beta} = \psi g_{\alpha \beta} + v^\gamma u^e D_{\gamma e}^\delta (\partial_\delta g_{\alpha \beta}).$$

Also from (53.8) and (57.1) we obtain

Theorem (57.3)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be conformal motion in

[200]
F_m is that

\[(57.5) \quad \overline{\nabla}_L g_{\alpha \beta} = \phi g_{\alpha \beta} - v^\gamma u^\epsilon D_{\gamma \epsilon} (\overline{\nabla}_L g_{\alpha \beta}). \]

Definition (57.1)

We call the point transformations (53.1) and (53.2) to be G-projective motion in F_m if they transform G-curves of F_m into the same system.

A necessary and sufficient condition for the point transformations (53.1) and (53.2) to be G-projective motion in F_m is that

\[(57.6) \quad DR^*_\beta = A^\epsilon_{\beta} - A^\gamma_{\gamma} \omega_\beta, \]

where ω_γ is a covariant vector field.

Equation (57.6) easily yields

\[(57.7) \quad DR^*_\beta = (m+1)\omega_\beta, \]

which by virtue of (57.6) implies

\[(57.8) \quad (m+1) DR^*_\beta = A^\epsilon_{\beta} DR^*_\gamma + A^\gamma_{\gamma} DR^*_\epsilon. \]
Now, by virtue of equation (57.11) and (57.12) we have

Theorem (57.4)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be G-affine as well as G-projective motion is that

\[
A^\alpha_\beta (v^e_\gamma + \partial^*_{\delta} R^e_\gamma v^\delta_\beta u^{\gamma_0} + J^e_\gamma v^\delta_\beta) + A_\gamma^\alpha (v^e_\beta + \\
\partial^*_{\delta} R^e_\beta v^\delta_\gamma u^{\gamma_0} + J^e_\beta v^\delta_\gamma) = 0
\]

If we put

\[
(57.13) \quad M^{*a}_{\beta\gamma} \equiv R^{*a}_{\beta\gamma} - \frac{1}{m+1} (A^a_\beta R^e_\gamma + A^a_\gamma R^e_\beta)
\]

we can easily prove

Theorem (57.5)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be G-projective motion in \(F_m \) is that

\[
D M^{*a}_{\beta\gamma} = 0.
\]
\[\partial_\gamma \Gamma^\ast_\beta_\gamma + v^\gamma D^\ast_\gamma \Gamma^\ast_\alpha \epsilon + v^\gamma D^\ast_\alpha \Gamma^\ast_\epsilon \beta = 0. \]

The infinitesimal point transformations (53.1) and (53.2) will be called special G-affine motion if and only if

\[(58.4) \quad \overline{\text{DR}}^\ast_\nu = 0. \]

Using value of \(R^\ast_\nu \) from equation (52.3) in (58.4) we get

\[(58.5) \quad \overline{\text{DF}}^\ast_\nu - \overline{\text{DD}}^\ast_\nu = 0. \]

Thus we have

Theorem (58.2)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be special affine as well as G-affine motion is given by

\[(58.6) \quad \overline{\text{DD}}^\ast_\nu = 0. \]
Using the definition of G-Lie derivative we can easily write

\[(58.7) \quad \bar{D}^{\alpha}_{\beta\gamma} = D^{\alpha}_{\beta\gamma} - (\partial^{\alpha}_{\beta\gamma})D^{\alpha}_{\theta\delta}u^{\delta}v^{\theta}.\]

Now, equation (58.7) by virtue of (52.3) and (53.17) implies

\[(58.8) \quad \bar{R}^{\alpha}_{\beta\gamma} = R^{\alpha}_{\beta\gamma} - v^{\delta}_{\delta\beta}D^{\alpha}_{\theta\delta} - v^{\delta}_{\delta\gamma}D^{\alpha}_{\theta\delta} - \]

\[-v^{\delta}_{\delta\beta}D^{\alpha}_{\theta\delta} + v^{\alpha}_{\theta\beta}D^{\alpha}_{\theta\beta} - v^{\delta}_{\delta\gamma}D^{\alpha}_{\theta\delta} - \]

\[-v^{\delta}_{\delta\gamma}D^{\alpha}_{\theta\delta} + v^{\theta}_{\theta\delta}D^{\alpha}_{\theta\delta} - \]

\[+v^{\delta}_{\delta\beta}D^{\alpha}_{\theta\delta} + v^{\delta}_{\delta\gamma}D^{\alpha}_{\theta\delta} + \]

\[+(\partial^{\alpha}_{\theta\gamma})D^{\alpha}_{\theta\delta}u^{\delta}v^{\theta}.\]

Hence:

Theorem (58.3)

The necessary and sufficient condition for the point transformations (53.1) and (53.2) to be special G-affine motion
REFERENCES
