Chapter 8

Lattice of Stratified Principal L-topologies

8.1 Introduction

In this chapter we investigate the lattice structure of the set of all stratified principal L-topologies on a given set X. In [11], Birkhoff described a technique of comparison of topologies and noted that the set of all topologies on a fixed set forms a complete lattice with the natural order of set inclusion. In [24], Aygün, Warner and Kundri introduced a new class of functions from a topological space (X, τ) to a fuzzy lattice L with its Scott topology called Scott continuous functions as a generalization of lower semi continuous functions from (X, τ) to $[0, 1]$. It is known [30] that

* Some results of this chapter are included in a paper accepted for publication in International journal of Fuzzy Information and Engineering, Springer.
the lattice of \(L \)-topologies on a given set \(X \) is complete and atomic. In [32], Jose and Johnson studied the lattice structure of the set \(L(X) \) of all stratified \(L \)-topologies on a given set \(X \). A related problem is to find sub-families in \(L(X) \) having certain properties. The collection of all stratified principal \(L \)-topologies \(S_P(X) \) forms a lattice with the natural order of set inclusion. The concept of principal topology in the crisp case was studied by Steiner [58]. The lattice of principal topologies is both atomic and dually atomic. Analogously, we study the lattice structure of the set of all stratified principal \(L \)-topologies \(S_P(X) \) on a given set \(X \). This lattice has atoms if and only if the membership lattice \(L \) has atoms. If the lattice \(S_P(X) \) has dual atoms, then \(L \) has dual atoms and atoms. Also if \(L \) is a finite pseudocomplemented chain or a Boolean lattice, then \(S_P(X) \) has dual atoms. It is also complete and join-complemented.

8.2 Preliminaries

Let \(X \) be a non empty set and \(L \) be a completely distributive lattice with an order reversing involution called \(F \)-lattice [34]. We denote the constant function in \(L^X \) taking the value \(\alpha \in L \) by \(\underline{\alpha} \). Here we call \(L \)-fuzzy subsets as \(L \)-subsets and a subset \(F \) of \(L^X \) is called an \(L \)-topology in the sense of Chang [13] and Goguen [23] as in [34], if

i. \(\underline{0}, \underline{1} \in F \)

ii. \(f, g \in F \Rightarrow f \land g \in F \)

iii. \(f_i \in F \) for each \(i \in I \Rightarrow \bigvee_{i \in I} f_i \in F \).
A subset F of L^X is called a stratified L-topology, if

i. $\alpha \in F$ for all $\alpha \in L$

ii. $f, g \in F \Rightarrow f \land g \in F$

iii. $f_i \in F$ for each $i \in I \Rightarrow \bigvee_{i \in I} f_i \in F$.

(The idea goes up to Lowen [35], while the term “stratified” has appeared for the first time in [42]). Steiner [58] proved that a topology τ is a principal topology if and only if arbitrary intersections of open sets are open(such kind of spaces are also called Alexandroff spaces [1]). Analogously, we define principal L-topology.

Definition 8.2.1. An L-topology is called principal L-topology provided that arbitrary intersections of open L-subsets are open L-subsets.

Example 8.2.1. Let X be an infinite set. Then $F = \{f \in L^X : x \leq f\}$ together with 0, where $x \in X$ and α is an atom in L, is a stratified principal L-topology.

Example 8.2.2. Let $X = R$ and $F = \{f \in L^X : f(x) > 0$ for all but finite number of points of $X\}$ together with 0. Then F is a stratified L-topology, which is not a principal L-topology.

Definition 8.2.2. A principal L-topology is called stratified principal L-topology provided that it contains every constant L-subset.

Definition 8.2.3. An element p of L is called prime if $p \neq 1$ and whenever $a, b \in L$ with $a \land b \leq p$, then $a \leq p$ or $b \leq p$. The set of all prime elements of L will be denoted $Pr(L)$.

Definition 8.2.4. [73] The Scott topology on L is the topology S, generated by the sets of the form $\{t \in L : t \nleq p \text{ where } p \in Pr(L)\}$. Let
Chapter 8. Lattice of Stratified Principal L-topologies

(X, τ) be a topological space and let L be a fuzzy lattice. $f : (X, \tau) \to L$ is said to be Scott continuous if $f : (X, \tau) \to (L, S)$ is continuous, i.e., if for every $p \in Pr(L), f^{-1}\{t \in L : t \not\succeq p\} \in \tau$.

Remark 8.2.1. When $L = [0, 1]$, the Scott topology coincides with the topology of topologically generated spaces of Lowen [35]. The set $\omega_L(\tau) = \{f \in LX | f : (X, \tau) \to L$ is Scott continuous $\}$ is a stratified L-topology. If τ is a principal topology, then $\omega_L(\tau)$ is a stratified principal L-topology, which is denoted $\omega_{PL}(\tau)$. A stratified principal L-topology F on X is called induced provided that there exists a principal topology τ on X such that $F = \omega_{PL}(\tau)$.

8.3 Lattice of Stratified Principal L-topologies

Let $S_P(X) = \{F | F$ is a stratified principal L-topology on $X\}$ and Π is the lattice of principal topologies on X. The family $S_P(X)$ of all stratified principal L-topologies forms a lattice under the natural order of set inclusion. The smallest stratified L-topology is the indiscrete L-topology, with all constant L-subsets, is denoted 0 and the largest stratified principal L-topology is the discrete L-topology, consisting of all L-subsets and is denoted 1.

Definition 8.3.1. [10] A lattice L is said to be join-complemented provided that for every x in L, there exists y in L such that $x \lor y = 1$.

Definition 8.3.2. [10] A lattice L is said to be meet-complemented provided that for every x in L, there exists y in L such that $x \land y = 0$.
8.3. Lattice of Stratified Principal L-topologies

Definition 8.3.3. [10] A lattice L is said to be complemented provided that for every x in L, there exists y in L such that $x \land y = 0$ and $x \lor y = 1$.

Definition 8.3.4. [10] A lattice L is said to be semi-complemented provided that it is either join-complemented or meet-complemented.

Theorem 8.3.1. [18] The Ultra spaces on a set E are exactly the topologies of the form $\mathcal{G}(x, \mathcal{U}) = \varphi(E - x) \cup \mathcal{U}$, where $x \in E$, \mathcal{U} is an ultrafilter on E not containing $\{x\}$.

Theorem 8.3.2. [58] The lattice of topologies Σ on a set E is distributive if E has fewer than three elements. If E has three or more elements, Σ is not even modular.

Theorem 8.3.3. [58] The lattice Π of principal topologies is a complemented lattice.

Theorem 8.3.4. The lattice of stratified principal L-topologies $S_P(X)$ on a set X is complete.

Proof. Let K be any subset of $S_P(X)$. Then K has the greatest lower bound and the least upper bound, since arbitrary intersections of stratified principal L-topologies are stratified principal L-topologies and $S_P(X)$ has the greatest element 1. □

Theorem 8.3.5. The collection $S'_p(X)$ of all induced stratified principal L-topologies on any set X is a complete sublattice of the complete lattice $S_P(X)$.

Proof. Clearly $S'_p(X)$ is a subset of $S_P(X)$. Let $F, G \in S'_p(X)$. Then
there exists topologies \(\tau \) and \(\tau' \) in \(\Pi \) such that \(F = \omega_{PL}(\tau) \) and \(G = \omega_{PL}(\tau') \). Then \(F \lor G = \omega_{PL}(\tau \lor \tau') \) and \(F \land G = \omega_{PL}(\tau \land \tau') \). Hence \(F \lor G \) and \(F \land G \) are in \(S'_p(X) \) so that \(S'_p(X) \) is a sublattice of \(S_p(X) \).

Let \(H \) be any subset of \(S'_p(X) \). Then \(H \) has the greatest lower bound since arbitrary intersections of principal topologies are principal topologies so that arbitrary intersections of induced stratified principal \(L \)-topologies are induced stratified principal \(L \)-topologies.

Let \(K \) be the set of upper bounds of \(H \). Then \(K \) is nonempty, since \(1 \in K \). Using the above argument, \(K \) has the greatest lower bound, say \(M \). Then this \(M \) is the least upper bound of \(H \). Thus every subset \(H \) of \(SP'(X) \) has the greatest lower bound and least upper bound. Hence \(S'_p(X) \) is a complete sublattice of \(S_p(X) \).

Proposition 8.3.1 [72]
For a stratified \(L \)-topology \((X, \omega_L(\tau))\), the family \(\beta = \{f^A_\alpha|A \in \tau, \alpha \in L\} \)
where \(f^A_\alpha(x) = \begin{cases} \alpha & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases} \)
is a base for \(\omega_L(\tau) \).

Proposition 8.3.2. [72]
For a stratified \(L \)-topology \((X, \omega_L(\tau))\), the family \(S = \{\mu_A|\mu_A \text{ is the characteristic function of the open set } A \text{ in } \tau\} \cup \{\Omega|\alpha \in L\} \) is a subbase for \(\omega_L(\tau) \).

Theorem 8.3.6. The collection \(S'_p(X) \) of all induced stratified principal \(L \)-topologies on any set \(X \) forms a lattice isomorphic to \(\Pi \).

Proof. Let \(X \) be a nonempty set and \(L \) be an \(F \)-lattice with its Scott
8.3. Lattice of Stratified Principal L-topologies

Let τ_1 and τ_2 are two principal topologies on X

$\tau_1 \lor \tau_2 = $ principal topology generated by τ_1 and τ_2

$$\omega_{PL}(\tau_1) = \{ f | f \text{ is a Scott continuous function from } (X, \tau_1) \to L \}$$

$$= L - \text{topology generated by } \{ \mu_A | A \in \tau_1 \} \cup \{ \alpha | \alpha \in L \}$$

$$\omega_{PL}(\tau_2) = \{ f | f \text{ is a Scott continuous function from } (X, \tau_2) \to L \}$$

$$= L - \text{topology generated by } \{ \mu_A | A \in \tau_2 \} \cup \{ \alpha | \alpha \in L \}$$

$$\omega_{PL}(\tau_1 \lor \tau_2) = \{ f | f \text{ is a Scott continuous function from } (X, (\tau_1 \lor \tau_2)) \to L \}$$

$$= L - \text{topology generated by } \{ \mu_A | A \in (\tau_1 \lor \tau_2) \} \cup \{ \alpha | \alpha \in L \}$$

$$\omega_{PL}(\tau_1) \lor \omega_{PL}(\tau_2) = \text{stratified principal } L - \text{topology generated by }$$

$$\omega_{PL}(\tau_1) \text{ and } \omega_{PL}(\tau_2)$$

$$= L - \text{topology generated by } \{ \mu_A | A \in \tau_1 \} \cup \{ \mu_A | A \in \tau_2 \} \cup \{ \alpha | \alpha \in L \}$$

$$= L - \text{topology generated by } \{ \mu_A | A \in (\tau_1 \lor \tau_2) \} \cup \{ \alpha | \alpha \in L \}$$

$$= \{ f | f \text{ is a Scott continuous function from } (X, (\tau_1 \lor \tau_2)) \to L \}$$

$$= \omega_{PL}(\tau_1 \lor \tau_2)$$

Hence $\theta(\tau_1 \lor \tau_2) = \theta(\tau_1) \lor \theta(\tau_2)$
Similarly

\[\omega_{PL}(\tau_1 \land \tau_2) = \{ f \mid f \text{ is a Scott continuous function from } (X, \tau_1 \land \tau_2) \to L \} \]

\[= L - \text{topology generated by } \{ \mu_A \mid A \in \tau_1 \land \tau_2 \} \cup \{ \alpha \mid \alpha \in L \} \]

\[= L - \text{topology generated by } \{ \mu_A \mid A \in \tau_1 \} \cup \{ \alpha \mid \alpha \in L \} \land \\
L - \text{topology generated by } \{ \mu_A \mid A \in \tau_2 \} \cup \{ \alpha \mid \alpha \in L \} \]

\[= \{ f \mid f \text{ is a Scott continuous function from } (X, \tau_1) \to L \} \land \\
\{ f \mid f \text{ is a Scott continuous function from } (X, \tau_2) \to L \} \]

\[= \omega_{PL}(\tau_1) \land \omega_{PL}(\tau_2) \]

Hence \(\theta(\tau_1 \land \tau_2) = \theta(\tau_1) \land \theta(\tau_2) \)

\(\tau_1 \neq \tau_2 \Rightarrow \{ f \mid f : (X, \tau_1) \to (L, S) \text{ is Scott continuous} \} \neq \{ f \mid f : (X, \tau_2) \to (L, S) \text{ is Scott continuous} \} \)

\[\Rightarrow \omega_{PL}(\tau_1) \neq \omega_{PL}(\tau_2) \]

\[\Rightarrow \theta(\tau_1) \neq \theta(\tau_2) \]

Hence \(\theta \) is one-one. Corresponding to an induced stratified principal \(L \)-
topology \(\omega_{PL}(\tau) \) in \(S'_p(X) \), there is a topology \(\tau \) in \(\Pi \) such that \(\theta(\tau) = \omega_{PL}(\tau) \). Hence \(\theta \) is on to. So \(\theta \) is an isomorphism.

Remark 8.3.1. Since \(S'_p(X) \) is isomorphic to \(\Pi \), \(S'_p(X) \) possesses all the properties of \(\Pi \). That is \(S'_p(X) \) is complete, atomic, dually atomic, complemented and not modular since \(\Pi \) has these properties [58].

Theorem 8.3.7. The lattice of stratified principal \(L \)-topologies \(S_p(X) \)
on a set \(X \) is not modular.
8.3. Lattice of Stratified Principal L-topologies

Proof. Lattice of principal L-topologies Π is isomorphic to $S'_P(X)$ and Π is not modular [58]. So $S'_P(X)$ is not modular. Since $S'_P(X)$ is a complete sublattice of $S_P(X)$, $S_P(X)$ is not modular. \hfill \Box

Theorem 8.3.8. If L has atoms, then the lattice of stratified principal L-topologies $S_P(X)$ on a set X has atoms.

Proof. Let α be an atom in L and let A be a proper subset of X. The stratified principal L-topology of the form F_α^A, where F_α^A is generated by $0 \cup f_\alpha^A$, where 0 is the zero element of $S_P(X)$ and $f_\alpha^A(x) = \begin{cases} \alpha & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ for each atom α in L, is an atom in $S_P(X)$. \hfill \Box

Theorem 8.3.9. [62] Let (X,F) and (X,G) be two fuzzy topological spaces on X. Then G covers F if and only if $G = F(\langle g \rangle)$ for every $g \in G - F$, where $F(\langle g \rangle)$ is the simple extension of F by g.

Theorem 8.3.10. If the lattice of stratified principal L-topologies $S_P(X)$ on a set X has atoms, then L has atoms.

Proof. Assume L has more than two elements. Let F be an atom in $S_P(X)$. Since F is an atom, F is a cover of 0 (zero element of $S_P(X)$). So by theorem 8.3.9 there exists an element g in $F - 0$ such that $F = 0(\langle g \rangle)$, the simple extension of 0 by g, i.e $0(\langle g \rangle) = \{ h \lor (k \land g) | h, k \in 0, g \notin 0 \}$. This g must be of the form f_α^A, where $A \subset X, \alpha$ is an atom in L. Otherwise we can find a stratified principal L-topology G smaller than F and greater than 0, which is a contradiction to the hypothesis. \hfill \Box

Combining theorem 8.3.8 and theorem 8.3.10, we get the following
Theorem 8.3.11. The lattice of stratified principal L-topologies $S_P(X)$ on a set X has atoms if and only if L has atoms.

Remark 8.3.2. Atoms in $S_P(X) = 0(f^a)$, where $0 = \{\lambda | \lambda \in L\}$. Atoms in $S'_P(X) = \omega_{PL}(\tau)$, where τ is an atom in Π, lattice of principal topologies. Atoms in $S'_P(X)$ and $S_P(X)$ are different. Atoms in $S'_P(X)$ is independent of atoms in L. But $S_P(X)$ has atoms if and only if L has atoms.

Theorem 8.3.12. The lattice of stratified principal L-topologies $S_P(X)$ on a set X is not atomic in general.

Proof. Follows from theorem 8.3.11. \qed

Theorem 8.3.13. If the lattice of principal L-topologies $S_P(X)$ on a set X has dual atoms, then L has dual atoms and atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

If $\mathcal{S} = \mathcal{S}(a, \mathcal{U}(b_\lambda)) = \{f | f(a) = 0\} \cup \{f | f \geq b_\lambda\}$, then the principal ultra L-topology $\mathcal{S}(a, \mathcal{U}(b_\lambda), a_\beta) = \mathcal{S}(a_\beta)$ is the simple extension of \mathcal{S} by a_β, i.e., $\mathcal{S}(a_\beta) = \{f \lor (g \land a_\beta) | f, g \in \mathcal{S}, a_\beta \notin \mathcal{S}\}$, where $a, b \in X, \lambda$ and β are the atom and dual atom in L respectively (from chapter 2). So $\mathcal{S}(a_\beta)$ is a dual atom in the lattice of principal L topologies. Since the simple extension of $\mathcal{S}(a_\beta)$ by the L point a_1 is 1(discrete L-topology), by theorem 8.3.9, 1 is a cover of $\mathcal{S}(a_\beta)$.
8.3. Lattice of Stratified Principal L-topologies

Suppose that F is a dual atom in $S_P(X)$. Then F is of the form $\mathcal{G}(a_\beta) = \mathcal{G}(a, \mathcal{U}(b_\lambda), a_\beta)$ and β must be the dual atom and λ must be the atom in L. Otherwise there exists an element G greater than F and less than 1. Which is a contradiction to the hypothesis.

Case 2.

Let X be a non empty set and L be a finite Boolean lattice.

If $\mathcal{G} = \mathcal{G}(a, \mathcal{U}(b_\lambda)) = \{ f | f(a) = 0 \} \cup \{ f | f \geq b_\lambda \}$, where $a, b \in X, \lambda$ is an atom, then a principal ultra L-topology $\mathcal{G}_\beta(a, \mathcal{U}b_\lambda) = \mathcal{G}_\beta = L$-topology generated by any $(m - 1)$ $\mathcal{G}(a_{\beta_i})$ among $m \mathcal{G}(a_{\beta_i}), i = 1, 2, ..., m, j = 1, 2, ..., m, i \neq j$ if there are m dual atoms $\beta_1, \beta_2, ..., \beta_m$, where $\mathcal{G}(a_{\beta_i})$ is the simple extension of \mathcal{G} by (a_{β_i}), i.e, $\mathcal{G}(a_{\beta_i}) = \{ f \lor (g \land a_{\beta_i}), f, g \in \mathcal{G}, a_{\beta_i} \notin \mathcal{G} \}$. m can be assumed infinite value (from chapter 2). So $\mathcal{G}(\beta_j)$ is a dual atom in the lattice of principal L topologies. Since the simple extension of $\mathcal{G}(\beta_j)$ by the L point a_{β_j} is 1 (discrete L-topology), by theorem 8.3.9, 1 is a cover of \mathcal{G}_β.

Suppose that F is a dual atom in $\beta(X)$. Then F is of the form $\mathcal{G}_\beta = \mathcal{G}_\beta(a, \mathcal{U}b_\lambda)$ and $\beta_1, \beta_2, ..., \beta_m$ must be dual atoms and λ must be atom in L. Otherwise there exists an element G greater than F and less than 1. Which is a contradiction to the assumption that F is a dual atom in $S_P(X)$.

So in either case if $S_P(X)$ has dual atoms, then L has dual atoms and atoms. Hence the proof of the theorem is completed. □

Theorem 8.3.14. If L is a finite pseudo complemented chain or a Boolean lattice, then $S_P(X)$ has dual atoms.

Proof. Case 1.
Let X be a non empty set and L be a finite pseudo complemented chain.

Since L is a finite pseudo complemented chain, it has atom and dual atom. Let τ be a dual atom in the lattice of principal topologies on X. Then by theorem 8.3.1, τ must be of the form $\mathcal{S}(a, \mathcal{U}) = \varphi(X - a) \cup \mathcal{U}$, where $a \in X$, \mathcal{U} is an ultrafilter not containing $\{a\}$. Since τ is a principal topology, \mathcal{U} is a principal ultra filter so that $\tau = \mathcal{S}(a, \mathcal{U}(b)) = \varphi(X - a) \cup \mathcal{U}(b)$. Then $\omega_{PL}(\tau) = \{f \geq b_\lambda | f : (X, \tau) \rightarrow L \text{ is a scott continuous function from}(X, \tau) \text{ to } L\}, b \in X$ and λ is an atom. Then $\omega_{PL}(\tau)$ is a stratified principal L-topology and $a_\alpha \notin \omega_{PL}(\tau)$ for $0 \neq \alpha \in L$. Let β be the dual atom in L and $F = \omega_{PL}(\tau) \lor a_\beta$. Then F is the ultra L-topology $\mathcal{S}(a_\beta)$ in $S_P(X)$ since the simple extension of F by a_1 is the discrete L-topology.

Case 2.

Let X be a non empty set and L be a finite Boolean lattice.

Since L is a Boolean lattice, it has atoms and dual atoms. Let τ be a dual atom in the lattice of principal topologies on X. Then by theorem 8.3.1, τ must be of the form $\mathcal{S}(a, \mathcal{U}) = \varphi(X - a) \cup \mathcal{U}$, where $a \in X$, \mathcal{U} is an ultrafilter not containing $\{a\}$. Since τ is a principal topology, \mathcal{U} is a principal ultra filter so that $\tau = \mathcal{S}(a, \mathcal{U}(b)) = \varphi(X - a) \cup \mathcal{U}(b)$. Then $\omega_{PL}(\tau) = \{f \geq b_\lambda | f : (X, \tau) \rightarrow L \text{ is a scott continuous function from}(X, \tau) \text{ to } L\}, b \in X$ and λ is an atom. Then $a_\alpha \notin \omega_{PL}(\tau)$ for $0 \neq \alpha \in L$. Let $\beta_1, \beta_2, ..., \beta_m$ are dual atoms in L and $F(a_{\beta_1}) = \omega_{PL}(\tau) \lor a_{\beta_1}, F(a_{\beta_2}) = \omega_{PL}(\tau) \lor a_{\beta_2}, ..., F(a_{\beta_m}) = \omega_{PL}(\tau) \lor a_{\beta_m}$. Let F_{β_j} is the L-topology generated by $(m - 1) F(a_{\beta_i})$ from $m F(a_{\beta_i}), i = 1, 2, ..., m, j = 1, 2, ..., m, i \neq j$. Then as in case 1, F_{β_j} is the ultra L-topology \mathcal{S}_{β_j} in $\beta(X)$ since the simple extension of F_{β_j} by a_{β_j} is the discrete L-topology.

In both cases, $S_P(X)$ has dual atoms. Hence the theorem. \qed
8.4. Complementation problem in the lattice of stratified principal L-topologies

Theorem 8.3.15. The lattice of stratified principal L-topologies $S_P(X)$ on a set X is not dually atomic in general.

Proof. Follows from theorem 8.3.14. \hfill \Box

8.4 Complementation problem in the lattice of stratified principal L-topologies

Theorem 8.4.1. If F is any stratified principal L-topology on X such that the topology corresponding to the characteristic functions in F is neither discrete nor indiscrete, then F has at least one join-complement.

Proof. Let τ be the principal topology corresponding to the characteristic functions in F. Since the lattice Π is complemented [58], we can find τ' in Π such that $\tau \land \tau' = 0$ and $\tau \lor \tau' = 1$ in Π. Then $F \lor \omega_{PL}(\tau') = 1$ and $F \land \omega_{PL}(\tau') \neq 0$ in $S_P(X)$. \hfill \Box

Theorem 8.4.2. The lattice of stratified principal L-topologies $S_P(X)$ on a set X is semi-complemented.

Proof. Let F be any stratified principal L-topology on X and τ be the topology corresponding to the characteristic functions in F. Let τ' be a complement of τ in Π. Then $F \lor \omega_{PL}(\tau') = 1$ in $S_P(X)$. \hfill \Box

Theorem 8.4.3. If F is an induced stratified principal L-topology $S_P(X)$ on X, then F has at least one complement in $S_P(X)$.
Proof. Since F is induced, there exists a topology τ in Π such that $\omega_{PL}(\tau) = F$. Since Π is complemented, there exists at least one topology τ' on Π such that $\tau \land \tau' = 0$ and $\tau \lor \tau' = 1$ in Π. Then $F \lor \omega_{PL}(\tau') = 1$ and $F \land \omega_{PL}(\tau') = 0$ in $S_{P}(X)$.

Remark 8.4.1. We have analyzed the lattice structure of the set of all stratified principal L-topologies on an arbitrary set X and have obtained characterization for certain properties of it. This study reveals more about the interplay between L-topology and lattice theory. Also for a given principal topology τ on X, the family F_{pr} of all stratified principal L-topologies defined by families of Scott continuous functions from (X, τ) to L, forms a lattice under the natural order of set inclusion. From this lattice, we can deduce properties of $S_{P}(X)$ and $S'_{P}(X)$.