Chapter 7

Lattice of Weakly Induced Principal L-topologies

7.1 Introduction

The concept of induced fuzzy topological space was introduced by Weiss [75]. Lowen called these spaces a topologically generated spaces. Martin [38] introduced a generalized concept, weakly induced spaces, which was called semi induced space by Mashhour et al. [40]. The notion of lower semi continuous functions plays an important tool in defining the above concepts. In ([24],[5]), Aygun et al. introduced a new class of functions from a topological space (X, τ) to a fuzzy lattice(F-lattice) L with its

* Some results of this chapter are included in the following paper.
scott topology called (completely) scott continuous functions, as a generalization of (completely) lower semi continuous functions from \((X, \tau)\) to \([0, 1]\).

It is known that \([30]\) lattice of \(L\)-topologies is complete, atomic and not complemented. In \([31]\), Jose and Johnson generalized weakly induced spaces introduced by Martin \([38]\) using the tool (completely) scott continuous functions and studied the lattice structure of the set \(W(X)\) of all weakly induced \(L\)-topologies on a given set \(X\). A related problem is to find subfamilies in \(W(X)\) having certain properties. The collection of all weakly induced principal \(L\) topologies \(W_P(X)\) form a lattice with the natural order of set inclusion. The concept of principal topologies in the crisp case was studied by Steiner \([58]\). The lattice of principal topologies is both atomic and dually atomic. Analogously we study the lattice structure of the set of all weakly induced principal \(L\)-topologies on a given set \(X\). Here we study properties of the lattice \(W_P\) of all weakly induced principal \(L\) topologies defined by families of (completely) scott continuous functions with reference to \(\tau\) on \(X\). From the lattice \(W_P\), we deduce the lattice \(W_P(X)\) of all weakly induced principal \(L\)-topologies on \(X\). It is join complemented. Also we prove that if \(L\) is a finite pseudocomplemented chain or a complemented \(F\)-lattice, then \(W_P(X)\) has dual atoms and if \(L\) has neither dual atoms nor atoms, then \(W_P(X)\) has no dual atoms.

7.2 Preliminaries

Let \(X\) be a nonempty ordinary set and \(L = (\leq, \lor, \land, ')\) be a completely distributive lattice with smallest element 0 and largest element 1, \(0 \neq 1,\)
and with an order reversing invalution $a \rightarrow a'$ ($a \in L$) called a F-lattice. We identify the constant function from X to L with value α by α. The fundamental definition of L-fuzzy set theory and L-topology are assumed to be familiar to the reader in the sense of Chang [13].

A topological space is called principal if it is discrete or if it can be written as the meet of principal ultra topologies. Steiner [58] proved that this is equivalent to requiring that the arbitrary intersection of open sets is open. Analogously we define principal L-topology as

Definition 7.2.1. An L-topology is called principal L-topology if arbitrary intersection of open L subsets is an open L subset.

Definition 7.2.2. [34] An element of a lattice L is called an atom if it is the minimal element of $L \setminus \{0\}$.

Definition 7.2.3. [34] An element of a lattice L is called a dual atom if it is the maximal element of $L \setminus \{1\}$.

Definition 7.2.4. [15] A lattice is said to be bounded if it possess smallest element 0 and largest element 1.

Definition 7.2.5. [34] A bounded lattice L is said to be join complemented if for all x in L, there exists y in L such that $x \vee y = 1$.

Definition 7.2.6. [34] A bounded lattice L is said to be meet complemented if for all x in L, there exist y in L such that $x \wedge y = 0$.

Definition 7.2.7. [34] A bounded lattice is said to be complemented if it is both join complemented and meet complemented.

Definition 7.2.8. [34] A bounded lattice L is said to be semi-
complemented if it is either join complemented or meet complemented.

Definition 7.2.9. [22] An element \(p \) of \(L \) is called prime if \(p \neq 1 \) and whenever \(a, b \in L \) with \(a \land b \leq p \), then \(a \leq p \) or \(b \leq p \). The set of all prime elements of \(L \) will be denoted by \(\text{Pr}(L) \).

Definition 7.2.10. [73] The Scott topology on \(L \) is the topology \(S \), generated by the sets of the form \(\{ t \in L : t \nleq p \} \) where \(p \in \text{Pr}(L) \). Let \((X, \tau) \) be a topological space and \(f : (X, \tau) \to L \) be a function, where \(L \) has its Scott topology. We say that \(f \) is Scott continuous if for every \(p \in \text{Pr}(L) \), \(f^{-1}\{ t \in L : t \nleq p \} \in \tau \).

Remark 7.2.1. When \(L = [0, 1] \), the Scott topology coincides with the topology of topologically generated spaces of Lowen [35]. The set \(\omega_L(\tau) = \{ f \in L^X; f : (X, \tau) \to L \text{ is Scott continuous} \} \) is an \(L \)-topology. It is the largest element in \(W_\tau \), where \(W_\tau \) is the lattice of weakly induced \(L \)-topologies defined by families of Scott continuous functions with reference to \(\tau \) on \(X \). If \(\tau \) is a principal topology \(\omega_L(\tau) \) is a principal \(L \)-topology, we can denote it by \(\omega_{PL}(\tau) \). An \(L \)-topology \(F \) on \(X \) is called an induced principal \(L \)-topology if there exist a principal topology \(\tau \) on \(X \) such that \(F = \omega_{PL}(\tau) \).

Definition 7.2.11. ([24], [5]) Let \((X, \tau) \) be a topological space and \(a \in X \). A function \(f : (X, \tau) \to L \), where \(L \) has its Scott topology, is said to be completely Scott continuous at \(a \in X \) if for every \(p \in \text{Pr}(L) \) with \(f(a) \nleq p \), there is a regular open neighbourhood \(U \) of \(a \) in \((X, \tau) \) such that \(f(x) \nleq p \) for every \(x \in U \). That is \(U \subset f^{-1}\{ t \in L : t \nleq p \} \) and \(f \) is called completely Scott continuous on \(X \), if \(f \) is completely Scott continuous at every point of \(X \).
Note.
Let F be a principal L-topology on the set X, let F_c denote the 0-1 valued members of F, that is, F_c is the set of all characteristic mappings in F. Then F_c is a principal L-topology on X. Define $F_c^* = \{ A \subset X : \mu_A \in F_c \}$ where μ_A is the characteristic function of A. The principal L-topological space (X, F_c) is same as the principal topological space (X, F_c^*).

Definition 7.2.12. A principal L-topological space (X, F) is said to be a weakly induced principal L-topological space, if for each $f \in F$, f is a scott continuous function from (X, F_c^*) to L.

Definition 7.2.13. If F is the collection of all scott continuous functions from (X, F_c^*) to L, then F is an induced space and $F = \omega_{PL}(F_c^*)$.

7.3 Lattice of weakly induced principal L-topologies

For a given principal topology τ on X, the family $W_{P\tau}$ of all weakly induced principal L-topologies defined by families of scott continuous functions from (X, τ) to L forms a lattice under the natural order of set inclusion. The least upperbound of a collection of weakly induced principal L-topologies belonging to $W_{P\tau}$ is the weakly induced principal L-topology which is generated by their union and the greatest lowerbound is their intersection. The smallest element is the indiscrete L-topology, denoted by 0 and the largest element is denoted by $1 = \omega_{PL}(\tau)$.

Also for a principal topology τ on X, the family $CW_{P\tau}$ of all weakly
induced principal L topologies defined by families of completely scott continuous function from (X, τ) to L forms a lattice under the natural order of set inclusion. Since every completely scott continuous function is scott continuous, it follows that $CW_{P\tau}$ is a sublattice of $W_{P\tau}$. We note that $W_{P\tau}$ and $CW_{P\tau}$ coincide when each open set in τ is regular open.

When $\tau = D$, the discrete topology on X, these lattices coincide with lattice of weakly induced principal L-topologies on X.

Theorem 7.3.1. [18] The Ultra spaces on a set E are exactly the topologies of the form $\mathcal{G}(x, \mathcal{U}) = \varnothing(E - x) \cup \mathcal{U}$, where $x \in E$, \mathcal{U} is an ultrafilter on E not containing $\{x\}$.

Theorem 7.3.2. The lattice $W_{P\tau}$ is complete.

Proof. Let S be a subset of $W_{P\tau}$ and let $G = \bigcap_{F \in S} F$. Clearly G is a principal L-topology. Let $g \in G$. Since each $F \in S$ is a weakly induced principal L topology, g is a scott continuous mapping from $(X, (F_c^*)$ to L, that is $g^{-1}\{t \in L : t \not< p \text{ where } p \in \Pr(L)\} \in F_c^*$ for each $F \in S$. Therefore $g^{-1}\{t \in L : t \not< p \text{ where } p \in \Pr L\} \in \bigcap_{F \in S} (F_c^*)$. Hence g is a scott continuous function from (X, G_c^*) to L, where $(X, G_c^*) = (X, \bigcap_{F \in S} F_c^*)$. That is $G \in W_{P\tau}$ and G is the greatest lower bound of S. Let K be the set of upperbounds of S. Then K is non empty, since $1 = \omega_{PL}(\tau) \in K$.

Using the above argument K has a greatest lowerbound, say H, then this H is a least upper bound of S. Thus every subset S of $W_{P\tau}$ has greatest lowerbound and least upperbound. Hence $W_{P\tau}$ is complete. \qed

Theorem 7.3.3. $W_{P\tau}$ is not atomic in general.
7.3. Lattice of weakly induced principal L-topologies

Proof. Atoms in $W_{P\tau}$ are either of the form $\{0, 1, \alpha\}$ or $\{0, 1, \mu_A\}$, where μ_A is the characteristic function of open subsets A of (X, τ) and $\alpha \in (0, 1)$. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $F = \{0, 1, \mu_{\{a\}}, \mu_{\{a, b\}}\}$.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \rightarrow .6$</td>
<td>$a \rightarrow 1$</td>
<td>$a \rightarrow .1$</td>
<td>$a \rightarrow .6$</td>
<td>$k : a \rightarrow .6$</td>
<td></td>
</tr>
<tr>
<td>$b \rightarrow .5$</td>
<td>$b \rightarrow 1$</td>
<td>$b \rightarrow .5$</td>
<td>$b \rightarrow .5$</td>
<td>$b \rightarrow 0$</td>
<td></td>
</tr>
<tr>
<td>$c \rightarrow .4$,</td>
<td>$c \rightarrow .4$,</td>
<td>$c \rightarrow .4$,</td>
<td>$c \rightarrow 0$,</td>
<td>$c \rightarrow 0$,</td>
<td></td>
</tr>
</tbody>
</table>
| $F_c = \{0, 1, \mu_{\{a\}}, \mu_{\{a, b\}}\}$. $F_c^* = \{\phi, X, \{a\}, \{a, b\}\} = \tau$ and $F \in W_{P\tau}$. But this F cannot be expressed as join of atoms. Hence $W_{P\tau}$ is not atomic.

\[\square\]

Theorem 7.3.4. $W_{P\tau}$ is not distributive.

Proof. Since every distributive lattice is necessarily modular, we prove that $W_{P\tau}$ is not modular. This can be illustrated with an example. Let X be an infinite set and τ be the discrete topology D on X. Then $W_{P\tau}$ becomes lattice of all weakly induced principal L-topologies on X and $\Pi(X)$, the lattice of principal topologies on X (identifying its characteristic functions) is a sublattice of W_{PD}. We know that $\Pi(X)$ is not modular and hence not distributive. Thus $W_{P\tau}$ is not distributive in general. \[\square\]

Theorem 7.3.5. If L is a finite pseudo complemented chain or a complemented F-lattice, then $W_P(X)$ has dual atoms.

Proof. case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

Since L is a finite pseudo complemented chain, it has atom and dual atom. Let τ be a dual atom in the lattice of principal topologies on X.

Then by theorem 7.3.1, τ must be of the form $G(a, \mathcal{U}) = \varphi(X - a) \cup \mathcal{U}$, where $a \in X, \mathcal{U}$ is an ultrafilter not containing $\{a\}$. Since τ is a principal topology, \mathcal{U} is a principal ultra filter so that $\tau = G(a, \mathcal{U}(b)) = \varphi(X - a) \cup \mathcal{U}(b)$. Then $\omega_{\mathcal{P}L}(\tau) = \{f \geq b_\lambda | f : (X, \tau) \to L \text{ is a scott continuous function from } (X, \tau) \text{ to } L\}, b \in X$ and λ is an atom in L. Then $a_\alpha \notin \omega_{\mathcal{P}L}(\tau)$ for $0 \neq \alpha \in L$. Let β be the dual atom in L and $F(a_\beta) = \omega_{\mathcal{P}L}(\tau) \lor a_\beta$. Then $F(a_\beta)$ is the ultra L-topology $G(a_\beta)$ in $\beta(X)$ since the simple extension of $F(a_\beta)$ by a_1 is the discrete L-topology. Let $G = F(a_\beta)$, $G_c = \{0 - 1 \text{ valued functions in } G\}$ and $G^*_c = \{A \subset X | \mu_A \in G_c\}$. Then the weakly induced principal L-topology defined by Scott continuous functions from $(X, (G^*_c))$ to L is a dual atom in $W_P(X)$.

Case 2.

Let X be a non empty set and L is a finite complemented F-lattice.

Since L is a complemented F-lattice, it has atoms and dual atoms. Let τ be a dual atom in the lattice of principal topologies on X. Then by theorem 7.3.1, τ must be of the form $G(a, \mathcal{U}) = \varphi(X - a) \cup \mathcal{U}$, where $a \in X, \mathcal{U}$ is an ultrafilter not containing $\{a\}$. Since τ is a principal topology, \mathcal{U} is a principal ultra filter so that $\tau = G(a, \mathcal{U}(b)) = \varphi(X - a) \cup \mathcal{U}(b)$. Then $\omega_{\mathcal{P}L}(\tau) = \{f \geq b_\lambda | f : (X, \tau) \to L \text{ is a scott continuous function}\}, b \in X$ and λ is an atom. Then $a_\alpha \notin \omega_{\mathcal{P}L}(\tau)$ for $0 \neq \alpha \in L$. Let $\beta_1, \beta_2, \ldots, \beta_m$ are dual atoms in L and $F(a_{\beta_1}) = \omega_{\mathcal{P}L}(\tau) \lor a_{\beta_1}, F(a_{\beta_2}) = \omega_{\mathcal{P}L}(\tau) \lor a_{\beta_2}, \ldots, F(a_{\beta_m}) = \omega_{\mathcal{P}L}(\tau) \lor a_{\beta_m}$. Let F_{β_j} is the principal L-topology generated by $(m - 1) F(a_{\beta_i})$ from $m F(a_{\beta_i}), i = 1, 2, \ldots, m, j = 1, 2, \ldots, m, i \neq j$. Then F_{β_j} is the ultra L-topology G_{β_j} in $\beta(X)$ since the simple extension of F_{β_j} by a_{β_j} or a_1 is the discrete L-topology. Take $G = F_{\beta_j}$ and let $G_c = \{0 - 1 \text{ valued functions in } G\}$ and $G^*_c = \{A \subset X | \mu_A \in G_c\}$. Then the weakly induced principal L-topology defined by Scott continuous functions from
7.3. Lattice of weakly induced principal L-topologies

(X, G^*_c) to L is a dual atom in $W_P(X)$
In both cases, $W_P(X)$ has dual atoms. Hence the theorem.

Theorem 7.3.6. If L has neither dual atoms nor atoms, then $W_P(X)$ has no dual atoms.

Proof. Let F be any weakly induced principal L-topology other than 1. Then we claim that there exists at least one weakly induced principal L-topology finer than F. Since F is a weakly induced principal L-topology different from 1, F cannot contain all characteristic functions of subsets of X. Since L has neither dual atoms nor atoms, the collection S of Scott continuous functions not belonging to F is infinite. If $g \in S$, then $F(g)$, the simple extension of F by g is a principal L-topology. Take $G = F(g)$. Let G_c denote the 0–1 valued members of G and $G^*_c = \{A \subset X | \mu_A \in G_c\}$, where μ_A is the characteristic function of A. Then there exists a weakly induced principal L-topology H defined by Scott continuous functions from (X, G^*_c) to L. Thus for any weakly induced principal L-topology F there exists a weakly induced principal L-topology H such that $F \subset H \neq 1$. Hence the proof of the theorem is completed.

Theorem 7.3.7. The lattice $W_P(X)$ of all weakly induced principal L-topologies on any set X is not dually atomic in general.

Proof. This follows from theorem 7.3.6.
7.4 Complementation problem in the lattice of weakly induced principal L-topologies

Proposition 7.4.1
If L has no dual atoms, then atoms in $W_{P_{\tau}}$ of the form $\{0, 1, \alpha\}$ have no complements in $W_{P_{\tau}}$.

Proof. Let $F = \{0, 1, \alpha\}$ be atom in $W_{P_{\tau}}$. We claim that F has no complement. 1 is not a complement of F since $1 \land F \neq 0$. Let P be a weakly induced principal L-topology in $W_{P_{\tau}}$ other than 1. If $F \subseteq P$, then P cannot be the complement of F, since $F \land P \neq 0$. If $F \not\subseteq P$, let $F \lor P = G$ and G has the subbase $\{f \land p | f \in F, p \in P\}$. Then G cannot be equal to 1. Hence P is not a complement of F. \qed

Remark 7.4.1. The above proposition is not true for an arbitrary lattice L. For example, take $L = \{0, \alpha, 1\}$ ordered by $0 < \alpha < 1$. If (X, τ) is a principal L-topological space and $K = \{0, 1, \alpha\}$, then clearly K is an atom in $W_{P_{\tau}}$, when α is not a characteristic function. Let $H = \{0, 1\} \cup \{\mu_A : A \in \tau\}$. Then H is an element of $W_{P_{\tau}}$ and $K \land H = 0$ and $K \lor H = 1$. Hence H is a complement of K.

Theorem 7.4.1. $W_{P_{\tau}}$ is not complemented.

Proof. This follows from the Proposition 7.4.1. \qed

Remark 7.4.2. When $\tau = D$, the discrete topology on X then $W_{P_D} = W_{P}(X)$, the collection of all weakly induced principal L-topologies on X. Let Δ denote the family of all weakly induced principal L-topologies
7.4. Complementation problem in the lattice of weakly induced principal L-topologies defined by scott continuous functions where each scott continuous function is a characteristic function. Then Δ is a sublattice of $W_P(X)$ and is a lattice isomorphic to the lattice of all principal topologies on X. The elements of Δ are called crisp principal topologies.

Theorem 7.4.2. The lattice of weakly induced principal L-topologies $W_P(X)$ is not complemented.

Proof. This follows from theorem 7.4.1. □

Theorem 7.4.3. Every atom in $W_P(X)$ of the form $\{0, 1, \mu_A\}$ has complement.

Proof. Let $F = \{0, 1, \mu_A\}$. Then F is an element of Π, lattice of principal topologies on X. Since Π is complemented there exists τ in Π such that $\tau \vee F$ equal to the discrete principal topology and $\tau \wedge F$ equal to the indiscrete principal topology on X. Then $F \vee \omega_{PL}(\tau) = 1 = \omega_{PL}(D)$ and $F \wedge \omega_{PL}(\tau) = 0$. □

Theorem 7.4.4. The lattice $W_P(X)$ of all weakly induced principal L-topologies on any set X is semi complemented.

Proof. Let $F \in W_P(X)$. Since F is weakly induced principal L-topology, there is a principal topology $\tau = F^*_c$ on X such that each element $f \in F$ is a scott continuous function from (X, F^*_c) to L. Since the lattice of principal topologies is complemented, we can find a principal topology τ' such that $F \vee \omega_{PL}(\tau') = 1 = \omega_{PL}(D)$ where D is a discrete topology and $F \wedge \omega_{PL}(\tau')$ need not be equal to 0, the indiscrete principal L-topology.
on X. Thus every F in $W_P(X)$ has a join complement. Hence $W_P(X)$ is semi complemented. \square