Chapter 3

Lattice of T_1-L topologies

3.1 Introduction

In this chapter we investigate the lattice structure of the collection of all T_1-L topologies on a given set X. In [30], Johnson studied the lattice structure of the set of all L-topologies on a given set X. It is quite natural to find sublattices in the lattice of L-topologies and study their properties. The collection of all T_1-L topologies on a given set X forms one of the sublattice of the lattice of L-topologies on X. One distinguishing feature between these two lattices is that the lattice of L-topologies is atomic while the collection of all T_1-L topologies is not. Lattice of T_1-L topologies is a complete sublattice of lattice of L-topologies. Also, the collection of

\begin{flushright}
Some results of this chapter are included in the following paper.
\end{flushright}
all T_1-L topologies is not modular. In [64] Liu determined dual atoms in the lattice of T_1 topologies and Frolich [18] proved this lattice is dually atomic. However, we prove that the collection of all T_1-L topologies has dual atoms if and only if L has dual atoms and that the collection of all T_1-L topologies is not dually atomic in general.

3.2 Preliminaries

Let X be a non empty ordinary set and $L = L(\leq, \lor, \land, ^\prime)$ be a F-lattice, i.e, a completely distributive lattice with a smallest element 0 and a largest element $1((0 \neq 1)$ and with an order-reversing involution $a \rightarrow a'(a \in L)$ [34]. Assume L has more than two elements. An L-fuzzy subset on X is a mapping $f : X \rightarrow L$. The family of all L-fuzzy subsets on X is denoted by L^X. We denote the constant function in L^X taking the value $\alpha \in L$ by $\underline{\alpha}$. Here we call L-fuzzy subsets as L-subsets and $F \subseteq L^X$ is called an L-topology in the sense of Chang [13] and Goguen [23] as in [34], if

\begin{enumerate}[(i)]
 \item $0, 1 \in F$,
 \item $f, g \in F \Rightarrow f \land g \in F$,
 \item $f_i \in F$ for each $i \in I \Rightarrow \bigvee_{i \in I} f_i \in F$.
\end{enumerate}

\textbf{Definition 3.2.1.} [44] A fuzzy point x_λ in a set X is a fuzzy set in
X defined by
\[x_\lambda(y) = \begin{cases}
\lambda & \text{if } y = x \\
0 & \text{if } y \neq x
\end{cases} \]
where \(0 < \lambda \leq 1 \)

In an \(L \)-topological space \(x_\lambda \) is called an \(L \)-point.

Definition 3.2.2. [44] An \(L \)-topological space \((X, F)\) is said to be a \(T_1 - L \) topological space if for every two distinct fuzzy points \(x_p \) and \(y_q \), with distinct support, there exists an \(f \in F \) such that \(x_p \in f \) and \(y_q \notin f \) and another \(g \in F \) such that \(y_q \in g \) and \(x_p \notin g \), \(\forall p, q \in L \setminus \{0\} \).

Remark 3.2.1. We take the definition of \(L \)-points \(x_\lambda, 0 < \lambda \leq 1 \) so as to include all crisp singletons. Hence every crisp \(T_1 \) topology is a \(T_1-L \) topology by identifying it with its characteristic function. If \(\tau \) is any topology on a finite set, then \(\tau \) is \(T_1 \), if and only if it is discrete. However, the same is not true in \(L \)-topology.

Example 3.2.1. Let \(X = \{a, b, c\} \) and \(L = \{0, \alpha, \beta, 1\} \) be the diamond lattice, then \(F = \{0, \mu_{\{a\}}, \mu_{\{b\}}, \mu_{\{c\}}, \mu_{\{a,b\}}, \mu_{\{a,c\}}, \mu_{\{b,c\}}, 1\} \) is a \(T_1-L \) topology. Let \(a_\lambda, b_\lambda, c_\lambda, 0 \neq \lambda \in L \) are \(L \)-points. The complements of \(a_\lambda, b_\lambda, c_\lambda \) are not open in \(F \) so that \(a_\lambda, b_\lambda, c_\lambda \) are not closed.

Definition 3.2.3. [22] An element \(p \in L \) is called prime if \(p \neq 1 \) and whenever \(a, b \in L \) with \(a \wedge b \leq p \), then \(a \leq p \) or \(b \leq p \). The set of all prime elements of \(L \) will be denoted by \(P_r(L) \).

Definition 3.2.4. [73] Scott topology on \(L \) is the topology generated by the sets of the form \(\{t \in L : t \nleq p\} \), where \(p \in P_r(L) \). Let \((X, \tau)\) be a topological space and \(f : (X, \tau) \to L \) be a function where \(L \) has
its Scott topology, we say that f is Scott continuous if for every $p \in P_r(L)$, $f^{-1}(t \in L : t \not\leq p) \in \tau$. (Some authors used the notation f^- instead of f^{-1}, for example in [48], [49], [50], [51]).

Remark 3.2.2. When $L = [0, 1]$, the Scott topology coincides with the topology of topologically generated spaces of Lowen [35]. Every Scott continuous function need not be lower semi continuous.

Example 3.2.2. Suppose k is a large positive integer. Let D_k be the set of all devisors of k. Give the order a/b in D_k; $a, b \in D_k$ such that $a \wedge b = \gcd(a, b)$, $a \vee b = \text{lcm}(a, b)$ and the corresponding Scott topology. Consider $X = D_k$ with the Scott topology, $L = D_k$ Then $f : X \to L$ defined as $f(x) = x$ is Scott continuous since $f^-(p, \infty) = (p, \infty)$, which is open in X for any prime p. But not lower semi continuous since $f^-(n, \infty) = (n, \infty)$, where n is not a prime is not open in X.

Remark 3.2.3. The set $\omega_L(\tau) = \{ f \in L^X; f : (X, \tau) \to L \text{ is scott continuous } \}$ is an L-topology. An L-topology F on X is called an induced L-topology if there exists a topology τ on X such that $F = \omega_L(\tau)$. If τ is a T_1 topology, $\omega_L(\tau)$ is a T_1-L topology.

Note 1.
A lattice L is modular if and only if, it has no sublattice isomorphic to N_5, where N_5 is a standard non modular lattice [20].

Definition 3.2.5. [34] An element of a lattice L is called an atom if it is the minimal element of $L \setminus \{0\}$.

Definition 3.2.6. [34] An element of a lattice L is called a dual atom if it is the maximal element of $L \setminus \{1\}$.
3.3 Lattice of T_1-L topologies

For any set X, the set $\Omega(X)$ of all T_1-L topologies on X forms a lattice with natural order of set inclusion. The least upper bound of a collection of T_1-L topologies belonging to $\Omega(X)$ is the T_1-L topology generated by their union and the greatest lower bound is their intersection. The smallest T_1-L topology is the cofinite topology denoted by 0 and largest T_1-L topology is the discrete L-topology denoted by 1.

Theorem 3.3.1. [18] The Ultra spaces on a set E are exactly the topologies of the form $\mathcal{G}(x, \mathcal{U}) = \varphi(E - x) \cup \mathcal{U}$, where $x \in E$, \mathcal{U} is an ultrafilter on E not containing $\{x\}$.

Theorem 3.3.2. [62] Let (X, F) and (X, G) be two fuzzy topological spaces on X. Then G covers F if and only if $G = F(g)$ for every $g \in G - F$, where $F(g)$ is the simple extension of F by g.

Theorem 3.3.3. The lattice $\Omega(X)$ is complete.

Proof. Let S be a subset of $\Omega(X)$ and $G = \bigcap_{\delta \in S} \delta$. Then G is a T_1-L topology and G is the greatest lower bound of S. Since any join(resp. meet) complete lattice with a smallest (resp.largest) element is complete, $\Omega(X)$ is complete.

Note 2.
Let CFT denote the crisp cofinite topology, where CFT $= \{\chi_A|A \text{ is a subset of } X \text{ whose complement is finite } \}$ together with \emptyset, χ_A is the characteristic function of A.

Theorem 3.3.4. $\Omega(X)$ is not atomic.

Proof. Atoms in $\Omega(X)$ are the T_1-L topologies generated by $\text{CFT} \cup \{x_\lambda\}$, $0 < \lambda \leq 1$, or $\text{CFT} \cup A$, $0 < \lambda < 1$, where x_λ is an L-point. Let $P = \{f \in L^X : f(x) > 0 \text{ for all but finite number of points of } X\}$ together with \emptyset. Then P is a T_1-L topology and P cannot be expressed as join of atoms. Hence $\Omega(X)$ is not atomic. \qed

Theorem 3.3.5. $\Omega(X)$ is not modular.

Proof. Let $x_1, x_2, x_3 \in X$ and $\alpha, \beta, \gamma \in (0, 1)$. Let F be the T_1-L topology generated by $\text{CFT} \cup \{f_1, f_2, f_3\}$ where f_1, f_2, f_3 are L subsets defined by

$$f_1(y) = \begin{cases} \alpha & \text{when } y = x_1 \\ 0 & \text{when } y \neq x_1 \end{cases}$$

$$f_2(y) = \begin{cases} \alpha & \text{when } y = x_1 \\ \beta & \text{when } y = x_2 \\ \gamma & \text{when } y = x_3 \\ 0 & \text{when } y \neq x_1, x_2, x_3 \end{cases}$$

$$f_3(y) = \begin{cases} \beta & \text{when } y = x_2 \\ \gamma & \text{when } y = x_3 \\ 0 & \text{when } y \neq x_2, x_3 \end{cases}$$

Let F_1 be the T_1-L topology generated by $\text{CFT} \cup \{f_1\}$. Let F_2 be the T_1-L topology generated by $\text{CFT} \cup \{f_1, f_2\}$.
Let F_3 be the T_1-L topology generated by $CFT \cup \{f_3\}$.

Then, we notice that $F_2 \lor F_3 = F$ and $F_1 \lor F_3 = F$ so that $\{CFT, F_1, F_2, F_3, F\}$ forms a sublattice of $\Omega(X)$ isomorphic to N_5, where N_5 is the standard non-modular lattice. Hence $\Omega(X)$ is not modular. \qed

Theorem 3.3.6. $\Omega(X)$ is not complemented.

Proof. Let F be the T_1-L topology generated by $CFT \cup \{x_\lambda\}$. Then 1 is not a complement of F since $F \land 1 \neq 0$. Let H be any T_1-L topology other than 1, the discrete L-topology. If $F \subset H$, then H cannot be the complement of F. Suppose that $F \not\subseteq H$, then H cannot contain simultaneously all characteristic functions of open sets in τ and all constant L-subsets. Then the set $K = \{k : k$ is a function from (X, τ) to L and $k \not\in H\}$ is non empty. Let $F \lor H = G$ and G has the subbase $\{f \land h | f \in F, h \in H\}$. Then G cannot be equal to the discrete L-topology, since there exists at least one subset of K which is not contained in G. Hence H is not a complement of F. \qed

Theorem 3.3.7. If L has dual atoms, then $\Omega(X)$ has dual atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

Let τ be a dual atom in the lattice of T_1 topologies on X. Then by theorem 3.3.1, τ must be of the form $\mathcal{G}(a, \mathcal{U}) = \wp(X - a) \cup \mathcal{U}$, where $a \in X, \mathcal{U}$ is a non principal ultrafilter not containing $\{a\}$. Then $\omega_{\mathcal{A}}(\tau) = \{f | f : (X, \tau) \rightarrow L$ is a scott continuous function$\}$. Then $a_\lambda \not\in \omega_{\mathcal{A}}(\tau), \lambda \in L$. Let β be the dual atom in L and $F = \omega_{\mathcal{A}}(\tau) \lor a_\beta$ and then F is the ultra L-topology $\mathcal{G}(a_\beta)$ in $\Omega(X)$ since the simple extension of F
by \(a_1\) is the discrete \(L\)-topology.

Case 2.

Let \(X\) be a non empty set and \(L\) is not a finite pseudo complemented chain.

Let \(\tau\) be a dual atom in the lattice of \(T_1\) topologies on \(X\). Then by theorem 3.3.1, \(\tau\) must be of the form \(\mathcal{G}(a, \mathcal{U}) = \varphi(X - a) \cup \mathcal{U}\), where \(a \in X\), \(\mathcal{U}\) is non principal ultrafilter not containing \(\{a\}\). Then \(\omega_{1L}(\tau) = \{f|f : (X, \tau) \to L\text{ is a scott continuous function}\}\). Then \(a_{\lambda} \notin \omega_{1L}(\tau), \lambda \in L\).

Let \(\beta_1, \beta_2, \ldots, \beta_m\) are dual atoms in \(L\) and \(F(\beta_i) = \omega_{1L}(\tau) \vee a_{\beta_1}, F(\beta_2) = \omega_{1L}(\tau) \vee a_{\beta_2}, \ldots, F(\beta_m) = \omega_{1L}(\tau) \vee a_{\beta_m}\). Let \(F_{\beta_j}\) is the \(L\)-topology generated by \((m - 1) F(\beta_i)\) from \(F(\beta_i), i = 1, 2, \ldots m, j = 1, 2, \ldots m, i \neq j\).

Then as in case 1. \(F_{\beta_j}\) is the ultra \(L\)-topology \(\mathcal{G}_{\beta_j}\) in \(\Omega(X)\) since the simple extension of \(F_{\beta_j}\) by \(a_{\beta_j}\) is the discrete \(L\)-topology.

In both cases since \(L\) has dual atoms, \(\Omega(X)\) has dual atoms. Hence the theorem. \(\Box\)

Note 3.

Let \(\tau\) be a dual atom in the lattice of \(T_1\) topologies on \(X\), \(\beta\) be the dual atom in \(L\) and \(A \subset X\) not in \(\tau\). Then \(\omega_{1L}(\tau) \vee \beta = \omega_{1L}(\tau) \vee \mu_{A}^{\beta}, \mu_{A}^{\beta}\) is defined by \(\mu_{A}^{\beta}(x) = \begin{cases} \beta & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}\)

Theorem 3.3.8. If \(\Omega(X)\) has dual atoms, then \(L\) has dual atoms.

Proof. Case 1.
Let X be a nonempty set and L, a finite pseudocomplemented chain.

Suppose that F is a dual atom in $\Omega(X)$. Then F is of the form $\mathfrak{S}(a_\beta)$ and β must be the dual atom in L. Otherwise there exists an element G greater than F and less than 1. Which is a contradiction to the hypothesis.

Case 2.
Let X be a non-empty set and L is not a finite pseudo complemented chain.

Suppose that F is a dual atom in $\Omega(X)$. Then F is of the form \mathfrak{S}_{β_j} and $\beta_1, \beta_2, ..., \beta$ must be dual atoms in L. Otherwise there exists an element G greater than F and less than 1. Which is a contradiction to the hypothesis.

So in either case if $\Omega(X)$ has dual atoms, then L has dual atoms. Hence the proof of the theorem is completed.

Combining theorem 3.3.7 and theorem 3.3.8, we have

Theorem 3.3.9. The lattice of T_1-L topologies $\Omega(X)$ has dual atoms if and only if L has dual atoms.

Theorem 3.3.10. $\Omega(X)$ is not dually atomic in general.

Proof. This follows from Theorem 3.3.7.