LIST OF TABLES

CHAPTER-1

Table 1.1 Some important reports on computing curriculum 9

CHAPTER-2

Table 2.1 Most important engineering and general professional competencies, as rated by Indian engineers and managers working in Indian and multi-national IT companies (2004) 37
Table 2.2 Comparative analysis of some common competencies distinguished and identified by some accreditation agencies 40
Table 2.3 Most important competencies as rated by Indian engineers and managers working in Indian and multi-national software companies (Revised Study 2007) 57
Table 2.4 The most important competencies for software development work related to software services and product development 58
Table 2.5 Taxonomy of core competencies for software developers- ver.1 60

CHAPTER-3

Table 3.1 Core competencies for software developers 77
Table 3.2 Three-tier taxonomy of core competencies for software developers 78

CHAPTER-4

Table 4.1 Most important activities that must be included in the main goals for a new software curriculum 86
Table 4.2 Biglan’s classification of disciplines 102
Table 4.3 Kolb’s learning styles 104
Table 4.4 Perceived importance of communication skills by programmers and systems analysts 109
Table 4.5 Profiles of the respondents for the two polls about communication competence among software developers 110
Table 4.6 Summary of responses for these two polls about communication competence 110
Table 4.7 Competency ladder (Integrating the ladders by Gordon Institute, Dreyfus and Dreyfus, and Denning) 119
Table 4.8 A Comparison of typical academic and real life problems 121
Table 4.9 Some techniques for solving complex ill-defined problems 122
CHAPTER-5

Table 5.1 Some common errors in logical and analytical reasoning
Table 5.2 Some key aspects of Schön’s perspectives on ‘design’ as ‘reflective action’
Table 5.3 Principles of Theory of Inventive Problem Solving (TRIZ/TIPS)

CHAPTER-6

Table 6.1 Re-interpreting Perry’s nine stage model of intellectual development as nine stage model of curiosity development
Table 6.2 Four decision styles proposed by Rowe and Boulgarides
Table 6.3 Multifaceted definition of engineering systems thinking by Frank and Waks, 2001
Table 6.4 Levels of systems thinking (derived from Boulding and Sanford)
Table 6.5 Shifting the focus for systems thinking (Capra’s criteria)
Table 6.6 Systems thinking approaches by Checkland and Jacobs
Table 6.7 Senge’s toolbox for cultivating systems thinking
Table 6.8 Kohlberg’s six stage model of human development
Table 6.9 Maslow’s Hierarchy of Human Needs

CHAPTER-7

Table 7.1 Importance of teaching methods as rated by Indian engineers and managers working in Indian and multi-national IT companies
Table 7.2 Perceived effectiveness of pedagogical engagements with respect to enhance of competencies: perceptions of software professionals
Table 7.3 Effectiveness of educational experiences for competency enhancement of computing students
Table 7.4 Comparison of Bloom level-specific normalized consolidated ratings
Table 7.5 Correlation between different consolidated ratings
Table 7.6 Attribute category-wise consolidated ratings by computing students
Table 7.7 Correlation matrix between attributes of different lecture formats based on computing students responses
Table 7.8 Selected catalogue of learning engagements for deep learning from the NSSE study
Table 7.9 Harden’s taxonomy of curriculum integration
Table 7.10 Salmon’s levels of collaborative e-learning
Table 7.11 Dillenbourg’s four conditions for collaborative learning
Table 7.12 Software professionals’ reflections about advantages of first mentoring experience

CHAPTER-8

Table 8.1 Three-tier taxonomy of core competencies for software developers
Table 8.2 Five-dimensional ladder of professional and human development
Table 8.3 A novel three-dimensional taxonomy of knowledge domain for software developers
Table 8.4 Perceived effectiveness of pedagogical engagements with respect to enhance of competencies: perceptions of software professionals
Table 8.5 Levels of active engagements (first of four dimensions of our taxonomy of pedagogic engagements)
Table 8.6a Some selected models for supporting student engagements at Analyze level
Table 8.6b Some selected models for supporting student engagements at Create and Evaluate levels
Table 8.7 Discipline integration sub-levels based on Biglan’s classification of disciplines
Table 8.8 Levels of integrative engagements (second of four dimensions of our taxonomy of pedagogic engagements)
Table 8.9 Levels of reflective engagements (third of four dimensions of taxonomy of pedagogic engagements)
Table 8.10 Levels of collaborative engagements(last of the four dimensions of taxonomy of pedagogic engagements)

CHAPTER-9

Table 9.1 Benefits of PSP as perceived by Students
Table 9.2 Application of Dillenbourg's principles
Table 9.3 Comparison of pre- and post-workshop consolidated ratings by faculty

APPENDICES

Table A1.1 Importance of twenty-three core engineering and general professional competencies, as rated by Indian engineers and managers working in Indian and multi-national IT companies
Table A1.2 Importance of teaching methods as rated by Indian engineers and managers working in Indian and multi-national IT companies
Table A3.1 Comparison of competencies examined in SPINE-based and revised study
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.2</td>
<td>Importance of thirty-five competencies as rated by Indian engineers and managers working in Indian and multi-national software companies (Revised Study 2007)</td>
</tr>
<tr>
<td>A4.1.a</td>
<td>Mapping of thirty-five competencies with the Final set of twelve core competencies, part –I</td>
</tr>
<tr>
<td>A4.1.b</td>
<td>Mapping of thirty-five competencies with the Final set of twelve core competencies, part-II</td>
</tr>
<tr>
<td>A9.1</td>
<td>A summary of students’ responses on ‘questioning in the class’</td>
</tr>
<tr>
<td>A10.1</td>
<td>Effectiveness of educational experiences for competency enhancement of software developers</td>
</tr>
<tr>
<td>A10.2</td>
<td>Perceived effectiveness of pedagogical engagements with respect to enhance of specific competencies – basic competencies: perceptions of software professionals (i) part-I</td>
</tr>
<tr>
<td>A10.2</td>
<td>Perceived effectiveness of pedagogical engagements with respect to enhance of specific competencies – basic competencies: perceptions of software professionals (i) part-II</td>
</tr>
<tr>
<td>A10.2</td>
<td>Perceived effectiveness of pedagogical engagements with respect to enhance of specific competencies – habits of mind: perceptions of software professionals (ii)</td>
</tr>
<tr>
<td>A10.2</td>
<td>Perceived effectiveness of pedagogical engagements with respect to enhance of specific competencies – attitudes and values: perceptions of software professionals (iii)</td>
</tr>
<tr>
<td>A10.3</td>
<td>Effectiveness of educational experiences for competency enhancement of computing students</td>
</tr>
<tr>
<td>A11.1</td>
<td>List of verbs used for assessing engineering education wrt Bloom’s taxonomy</td>
</tr>
<tr>
<td>A11.2</td>
<td>Ordered lists of activity verbs</td>
</tr>
<tr>
<td>A11.3</td>
<td>Comparison of Bloom level-specific normalized consolidated ratings</td>
</tr>
<tr>
<td>A11.4</td>
<td>Correlation between different consolidated ratings</td>
</tr>
<tr>
<td>A12.1</td>
<td>Anecdotes about the best lectures offering most effective learning experience, as recalled by senior computing students</td>
</tr>
<tr>
<td>A12.2</td>
<td>Anecdotes about the best lectures offering most effective learning experience, as recalled by sophomore computing students at the beginning of their 3rd semester</td>
</tr>
<tr>
<td>A12.3</td>
<td>Anecdotes about the best lectures offering most effective learning experience, as recalled by faculty members of engineering institutes from their student life</td>
</tr>
<tr>
<td>A12.4</td>
<td>Anecdotes about the best lectures delivered by the faculty members of engineering institutes, as recalled by them</td>
</tr>
<tr>
<td>A13.1</td>
<td>Attributes to characterize variety of lecture format in engineering/software development education</td>
</tr>
<tr>
<td>A13.2</td>
<td>Comparison of computing students’ perception of effectiveness and usage rate of lecture format attributes</td>
</tr>
<tr>
<td>A13.3</td>
<td>Attribute category-wise consolidated ratings by computing students</td>
</tr>
<tr>
<td>A16.1</td>
<td>Format for reflective report on final year project</td>
</tr>
<tr>
<td>A16.2</td>
<td>Reflective assignments in three final year elective course</td>
</tr>
</tbody>
</table>
Table A16.3 Two sample assignments in ‘software arteology,’ emphasizing on reflection
Table A16.4 Some sample responses to last sub-question (now what?) of some assignments (Table A16.5)
Table A17.1 Mentor feedback on infusion of web technology
Table A17.2 Mentor feedback on infusion of multimedia technology
Table A17.3 Mentor feedback on infusion of mobile technology
Table A17.4 Mentor feedback on infusion of security aspects
Table A17.5 Mentor feedback on infusion of systems design aspects
Table A17.6 Mentor feedback on infusion of PSP (time logs)
Table A17.7 Mentor feedback on infusion of open source
Table A17.8 Mentor feedback on infusion of PSP (Bug log)
Table A17.9 Mentor feedback on infusion of security aspects
Table A17.10 Mentor feedback on infusion of systems design aspects
Table A17.11 Mentor feedback on infusion of open source
Table A17.12 Mentor feedback on infusion of PSP (Bug log)
Table A21.1 Sample laboratory assignment for introduction to programming
Table A21.2 Comments of students on their experience with collaborative peer programming
Table A23.1 Alumni reflections on the effect of mentoring on mentors’ competencies
Table A23.2 Advantages of mentoring as identified by alumni

ANNEXURES
Table AN1.1a A chronological list of some important theories about human learning, intelligence, and thinking (pre 1990)
Table AN1.1b A chronological list of some important theories about human learning, intelligence, and thinking (1990 onwards)
Table AN1.1 Accreditation Criteria and Weights defined by NBA, India for Diploma (Dip.), Undergraduate (UG), and Postgraduate (PG) Engineering Programs
Table AN6.1 Polya’s recommended cognitive engagement of mathematical problem solving
Table AN9.1 Senge’s laws of systems thinking
Table AN9.2 Characteristics of systems thinkers
Table AN9.3 Levels of systems thinking expertise (Dennis Meadows)
Table AN9.4 Boulding’s hierarchy of real world complexity
Table AN9.5 Schwartz Value Categories