List of Figures

1.1 Schematic illustration of bound magnetic polaron [26]. In the figure, cation sites are represented by small circles, the unoccupied oxygen sites are represented by squares. .. 6

1.2 Schematic representation of the electronic structure of TM at a substitu­tional site in II-VI, III-V semiconductors. .. 8

1.3 Mechanisms for transport in a disordered system. In case 1, the electron is thermal activated to the states above the mobility edge. In case 2, the electron hops to the nearest localized state while in the case 3, the electron hops to the optimum site as explained in the text [32]. 9

1.4 Schematic of different types of band alignment occurring at the interface of a heterojunction. ... 11

1.5 Schematic representation of band diagram at the interface of semiconduc­tor heterojunction. .. 13

2.1 Pulsed laser deposition setup. ... 33

2.2 Schematic potential energy diagram of an excimer molecule. 34

2.3 Schematic representation of principle of X-ray diffraction. \(\theta \) is the angle that incident and diffracted X-ray beams make with atomic planes, \(d \) is the interplanar spacing. .. 37

2.4 Schematics of photoemission process. .. 39

2.5 Experimental workstation of AIPES beamline at Indus-1 RRCAT, Indore, India. ... 41

2.6 An energy level diagram of the possible transitions involved in UV-Visible spectroscopy. Cross mark shows the forbidden transitions. 44

2.7 Schematics of (a) two probe and (b) four probe technique for determining the resistance of the materials. .. 47
2.8 SQUID (superconducting quantum interference device) flux sensor. Schematic view of a commercial SQUID magnetometer consisting of a liquid He cryostat, a superconducting magnet, the variable-temperature sample chamber with thermometers and the detection coils close to the sample position. (Reproduced from [13]) 50

3.1 X-ray diffraction patterns of the films; (a), (b) and (c) corresponds to the diffraction patterns of pure ZnO, NiZnO films and Si(100) substrate, respectively. "*" represents the diffraction peaks of the substrate. 56

3.2 Detailed scan of Ni 2p XPS CL in NiZnO film. 57

3.3 O 1s CL in (a) undoped ZnO and (b)NiZnO films, respectively. The peaks 'L', 'M' and 'H' being the lower, middle and higher binding energy peaks appearing at ≈ 530, 531 and 532 eV that corresponds to O^{2-} ions in ZnO matrix, oxygen vacancies and chemisorbed oxygen species, respectively. 57

3.4 Valence band spectra of ZnO and NiZnO films taken at 67 eV excitation energy. .. 58

3.5 Variation of conductivity (σ) with temperature (T) for ZnO and NiZnO films. .. 59

3.6 (a) represents the plot of ln(σ T^{1/2}) vs T^{-1/4} indicating the T^{-1/4} dependency of conductivity at low temperature regime (T<40 K) and (b) illustrates the variation of ln(σ T) vs T^{-1} under relatively high temperature regime (100<T<270 K). .. 61

3.7 Magnetoresistance data at low (3 K) and high (320 K) temperature for (a) ZnO and (b) NiZnO films. (c) and (d) shows the H^{2} dependence of MR at 320 K for ZnO and NiZnO at low field (∼ 3 T). 61

3.8 Variation of magnetization with temperature of ZnO and NiZnO thin films. (b) shows the 1/χ versus temperature plot for Ni doped ZnO thin film. 63

4.1 X-ray diffraction patterns of pure ZnO, Ni_{0.07}Zn_{0.93}O and Ni_{0.07}Zn_{0.93}O/ZnO samples. .. 71

4.2 Optical transmission spectra of the grown samples. 72

4.3 Tauc's plot for calculation of band gap in grown samples. 73

4.4 Magnetoresistance curve of Ni_{0.07}Zn_{0.93}O film. Inset represents the Magnetoresistance at 300 K. Symbols represent the experimental data and solid lines are the fit to the experimental data using equation 4.8. 74

4.5 Variation of fitting parameters a,b,c and d with temperature. 75

4.6 XPS core level spectra of thin films, (a) and (b) shows Ni 2p_{3/2} core level spectra of Ni_{0.07}Zn_{0.93}O film and Ni_{0.07}Zn_{0.93}O/ZnO heterostructure, (c) and (d) illustrates the spectra of Zn 2p_{3/2} core level in ZnO and Ni_{0.07}Zn_{0.93}O/ZnO, respectively. 77
4.7 Valence band spectra of (a) ZnO film and (b) Ni_{0.07}Zn_{0.93}O film. 78
4.8 Schematic of band alignment of Ni_{0.07}Zn_{0.93}O/ZnO heterostructure. 79
5.1 X-ray diffraction patterns of the grown samples. 85
5.2 Current-voltage relationship of (a) Ni_{0.07}Zn_{0.93}O/Mg_{0.21}Zn_{0.79}O heterojunc-
tion (b) Mg_{0.21}Zn_{0.79}O and (c) Ni_{0.07}Zn_{0.93}O at 10 K and 100 K. 86
5.3 (a) Behavior of Hall voltage of Ni_{0.07}Zn_{0.93}O sample with magnetic field, at 10 K and 100 K. (b) and (c) shows the linearity of the contacts on the Hall structure at 100 K and 300 K, respectively. 87
5.4 Valence band spectra of Ni_{0.07}Zn_{0.93}O and Mg_{0.21}Zn_{0.79}O films. 87
5.5 Schematics depicting the charge transport in Ni_{0.07}Zn_{0.93}O/Mg_{0.21}Zn_{0.79}O heterojunction at 10 K and 100 K. 88
5.6 The resistance-voltage relationship for Ni_{0.07}Zn_{0.93}O/Mg_{0.21}Zn_{0.79}O hetero-
junction at 10 K and 100 K. ... 89
6.1 Schematics of the Z-scan experimental setup. 1. Laser Source, 2. Beam
6.2 X-ray diffraction patterns of undoped ZnO and Ni_{0.05}Zn_{0.95}O films. 99
6.3 Valence band spectra of the grown samples. Inset shows the valence band
spectra of Au foil. ... 99
6.4 Transmission spectra of the grown samples. .. 100
6.5 Tauc's plot for the calculation of band gap of the grown samples. 101
6.6 Open aperture Z-scan curves for undoped ZnO and Ni_{0.05}Zn_{0.95}O films;
Symbols are the experimental data points and the solid lines are the theo-
retical fits using eq. (6.5). (OA Z-scan curve of ZnO are reprinted from [13],
Copyright, John Wiley and Sons.) .. 102
6.7 Variation of transmittance as a function of distance in case of closed aper-
ture Z-scan curves measurement for undoped ZnO and Ni_{0.05}Zn_{0.95}O films;
the solid lines are the theoretical fits using eq. (6.8). 103