CHAPTER VI

CONCLUSION

The EUCCC can be called a coinage of India in the early historical period. It covers almost the entire Indian sub-continent, except modern Andhra Pradesh, Karnataka, Tamilnadu and Kerala. The period of circulation of EUCCC shows that it originated around circa 500 B.C. and continued in circulation up to A.D. 100 only, which can be suggested as the main reason for its non-spread in these localities. The EUCCC reached the southern most limit of its circulation around circa 150 B.C. at Nashik. A further south-ward movement from Nashik was probably restricted by the emergence of Satavahana coinage in the locality.

The period of circulation of EUCCC begins with the powerful Magadhan Kings of Nanda dynasty and last up to the establishment of Kusana power in India, witnessing the rise and fall of Mauryan empire. During this period development in trade and manifold increase in the economic
activity of the people are recorded. The change in the social and economic conditions that started with the advent of iron technology got established during this period.

Though the EUCCC came to exist even before the rise of Mauryas, still its widespread circulation seems to have gained momentum with the emergence of Mauryan empire. This would lead to the conclusion that the slow and steady spread of EUCCC first within zone-1 and then in other zones is probably due to a corresponding development in the volume of trade and commerce. A uniform pattern of administration added much to the development of trade, and therefore, we find that after circa 300 B.C. the EUCCC spread out in other localities rapidly. The specialization of a particular craft, and availability of raw materials in specified areas were probably the prime reasons for the development of trade. The different inland trade routes can be marked on the basis of the ancient literature\(^1\) which is corroborated by the recent archaeological excavations. The river Ganga also acted

as the main trade route throughout the Mauryan. It seems that on both the banks of river Ganga there were secondary in land trade routes connecting the main trading centres. A.N. Bose would also suggest "the inland trade was carried along the rivers of the Ganges and the Jamuna and the large number of tributaries descending into them from the Himalayas and the Vindhyas." Mr. Darian also seems to agree with this view when he says: "Actually many of the rivers of North Bihar are navigable and it is reasonable to assume that they had formed a net work of trade and communication with the Ganges from earliest time." Among the noted feeders he mentions Kosi, Gandak, Ghagra and Son. It is interesting to note that the sites of Kataragahr, Vaisali, Chechan, Chirand and Champa are located on the northern bank of the river Ganga in the same locality and probably also suggest to have made the important halting centres

3. n.1 p. 68.
4. n.2. p. 68.
for traders, connecting the ancillary trade routes with interiors. Thus it seems that the spread of EUCCC in different localities, is closely connected with trade and commerce.

This aspect becomes clearer from the distribution of NBPW, which probably is the earliest indication of greater economic mobility. As said earlier the EUCCC is found at different sites in association with NBPW and its 'finds reveal the definite existence of commercial relations' throughout the area of its distribution. The NBPW seems to have originated much earlier (Circa 600 B.C) but its recognisable spread in different localities started with the development in trade and commerce probably coinciding with the flourishing economic conditions under Nandas and Mauryas. Wheeler also seems to link its recognisable spread with the Mauryas. But Agrawal would suggest: "It spread much earlier, either along with early Buddhism or with the iron trade and technology." But, a closer cultural affinity is not

necessarily established by the mere occurrence of NBPW in the initial phases. The NBPW for instance appears in zone-3 and 4 in a period after or coinciding with the emergence of Mauryan power. The spread of NBPW therefore, seems to suggest commercial relationship of different localities, which may be broadly bracketed between circa 600 B.C. and 300 B.C. in zone-2 and after circa 400 B.C. in zone-3. The overlapping phase of NBPW with PGW in zone-2 can be dated between circa 500 B.C. and 400 B.C.7 This also leads to suggest that the distribution of EUCCC along with NBPW can be attributed to the development in trade and commerce under Óandás. The existing commercial relations of different localities got further impetus under Mauryas and the EUCCC alongwith NBPW reached the farflung areas of the sub-continent, particularly in the South and north-western part of India. The close association of EUCCC with NBPW therefore directly links its spread in different localities with

7. Ibid. Fig.4.
the commercial contacts.

Further, the cultural context of distribution of EUCCC along with NBPW reveals that commercial contacts were primarily responsible for the development towards Urbanism in different localities. The urban developments particularly in zone-2 and 3 were preceded in advance by the development of iron technology, 'without radically disrupting the earlier tradition.' There was probably a slow process of change beginning with the advent of iron technology. No doubt iron contributed to the development in trade and commerce which is also revealed by the fact that the EUCCC appears in a developed cultural context towards urbanism in succeeding zones.

An examination of the varieties found in different areas (discussed in Ch.IV) also support the spread of EUCCC along with the development in trade and commerce. These are very few varieties found in different localities which may be described as representing 'universal' nature in circulation. Category-1, Group A Varieties A, B, C and H are found in different localities and,
therefore, the spread of these varieties may reveal its close relationship with the development in trade and commerce. In zone-1 these varieties appear with the emergence of coinage in a period generally dated between circa 600 B.C. and 150 or 200 B.C., and continue in circulation in the subsequent period. In zone-2 the spread of these varieties along with their period of appearance is not reflected clearly in the available reports. But in zone-3 at Maheshwar and Navdatoli varieties A and H are found in later part of period IV (circa 400 B.C. to 100 B.C.) which continues in period V (circa 100 B.C. to A.D. 200). At Tripuri Variety H is found in Stratum III dated around circa 200 B.C. At Pauni also Var. H is found in Mauryan-Sunga period dated between circa 200 B.C. and 100 B.C. As such it seems that the universal varieties reached the far flung areas upto Pauni in Maharashtra in later periods between circa 300 B.C. and 200 B.C., which can be attributed to the period of Mauryas. Therefore, spread of EUCCC seems directly related with the development in trade, which flourished under the unified empire of Mauryas.
There are certain varieties found in certain localities indicating restricted circulation in one or two sites alone. These varieties may suggest that prior to the emergence of Mauryas different varieties issued by local guilds or rulers were in circulation. Again after the break up of the empire after circa 200 B.C (category 1. Group B.) there emerged a number of varieties in restricted circulation. This may also suggest that while the wide spread needs of trade and commerce throughout the area of distribution of EKCC were fulfilled by 'universal' varieties, the local requirements in a particular area were satisfied by the varieties in restricted circulation. However, here it seems little unfair to deduce anything more on the basis of the available evidence particularly when the details of varieties found in different localities are not available in full.

The complexities involved in casting (discussed in ch. V) also suggest specialisation in the technological knowledge of smelting copper oars. For melting of copper oars high temperature furnaces were required, capable
of producing a temperature 1083 C which can not
be obtained in open firing. The availability of oars
in a limited area (in Bihar and Rajasthan) must have
added to the economic mobility of the people. The
four stages marked in the evolution of casting techni-
que, also suggest that a need for massive production
of coins arose later on. The use of multiple moulds
producing coins in a batch may be placed between
circa 300 B.C and 200 B.C. However the actual evidence
of multiple moulds (for Yandhaya coinage) are available
from circa 100 B.C and not earlier. No coin moulds
of EUCCC are recorded anywhere in the finds, and there-
fore the moulds found of different coinages are used
as an indirect evidence for reconstructing the picture
of manufacturing technique involved in the production of
EUCCC. The study of the EUCCC suggests that somewhat
similar moulds as those found were probably also used
for its manufacturing.

8. H.C.Bhardwaj Aspects of Ancient Indian Technology.
 (Delhi, 1979). p.92
 (The procedures for melting copper as followed by
 the smelters in Sikkim and Singhana(Rajasthan)
 may be cited as a parallel of the ancient pract-
 ice).
Thus the EUCCC appears to have played a significant role in commercial transactions throughout the area of its distribution between circa 500-450 B.C. and circa A.D.100-200, and formed one of the important factors associated with urban development practically throughout North India and parts of Maharashtra, with closer cultural affinities with the region north of the Vindhyas.