Chapter - I

Introduction
CHAPTER-I

INTRODUCTION

1.1. INTRODUCTION

Social science is one of the subjects from social studies. It is a unique subject from the education of school level. It paves way to learn more about the different culture, habits, environment, natural calamities, social problems etc. Learning social science is indispensable to acquire the knowledge of present scenario. It should be developed among the young generation. It assures to save the energy and learns to follow the acceptable habits. Methods of teachings are important in teaching and learning process in the school level. Revamping the methods of teaching enhance the quality education and motivate the learners to achieve the expected competency in the discipline. Identifying innovative methods or encouraging the new methods is inevitable to create the interest of the young learners in social science. Hence the study may be an anvil to shape the learners of glittering in the field of remembering the social aspects at school level.

1.2. TEACHING OF SOCIAL STUDIES

Teaching of social studies powerfully and authentically begins with a strong knowledge and understanding of the subject and its unique goals. Social studies prepare students to identify, understand, and work to solve the challenges facing our diverse nation in an increasingly interdependent world. Education for citizenship should help students acquire and learn to use the skills, knowledge, and attitudes that can prepare them to be competent and responsible citizens throughout the lives. Competent and responsible citizens are informed and thoughtful, participate in communities are involved
politically, and exhibit moral and civic virtues. Meaningful social studies builds curriculum networks of knowledge, skills, beliefs, and attitudes that are structured around enduring understandings, essential questions, important ideas and goals. Key concepts and themes are developed in depth. The most effective social studies teachers do not diffuse their efforts by covering too many topics superficially. Breadth is important, but deep and thoughtful understanding is essential to prepare students for the issues of 21st century citizenship. Skills necessary to help our students thrive in a world of continuous and accelerating change are emphasized. These include discipline-based literacy, multi-disciplinary awareness, information gathering and analysis, inquiry and critical thinking, communication, data analysis and the prudent use of twenty-first century media and technology. Skills are embedded throughout meaningful social studies lessons, rather than added on at the end. Teachers are reflective in planning, implementing and assessing meaningful curriculum. Reflective teachers are well informed about the nature and purposes of social studies, have a continually growing understanding of the disciplines that they teach, and keep up with pedagogical developments in the field of social studies. Meaningful curriculum includes extensive and reflective study of the United States and other nations’ histories, religions, and cultures. Social studies subjects are rich, interrelated disciplines, each critical to the background of thoughtful citizens.

1.2.1. Social studies curriculum

The social studies curriculum is integrative, addressing the totality of human experience over time and space, connecting with the past, linked to the present and looking ahead to the future. Focusing on the core social studies disciplines, it includes materials drawn from the arts, sciences, and humanities, from current events, from local
examples and from students’ own lives. Each of the social studies disciplines integrates content from the others. Units and lessons can draw on ideas from economics, geography, history, political science and sociology to increase understanding of an event or concept. Each disciplined pursuit demands a level of sensitivity and awareness to content drawn from the arts, humanities and sciences. Powerful social studies teaching combines elements of all the disciplines as it provides opportunities for students to conduct inquiry, develop and display data, synthesize findings and make judgments. Social studies teaching and learning requires effective use of technology, communication, and reading/writing skills that add important dimensions to students’ learning. Social studies teachers recognize that students do not become responsible, participating citizens automatically. The values embodied in our democratic form of government, with its commitment to justice, equality, and freedom of thought and speech, are reflected in social studies classroom practice. Social studies teachers develop awareness of their own values and how those values influence their teaching. They assess their teaching from multiple perspectives and, when appropriate, adjust it to achieve a better balance. Students are made aware of potential policy implications and taught to think critically and make decisions about a variety of issues, modeling the choices they will make as adult citizens. Students learn to assess the merits of competing arguments, and make reasoned decisions that include consideration of the values within alternative policy recommendations. Through discussions, debates, the use of authentic documents, simulations, research, and other occasions for critical thinking and decision making, students learn to apply value-based reasoning when addressing problems and issues. Students engage in experiences that develop fair-mindedness, and encourage recognition
and serious consideration of opposing points of view, respect for well-supported positions, sensitivity to cultural similarities and differences, and a commitment to individual and social responsibility. Student work can reflect a balance between retrieval and recitation of content and a thoughtful examination of concepts in order to provide intellectual challenges. The teacher must explain and model intellectual standards expected of students. These include, but are not limited to: clarity, precision, completeness, depth, relevance, and fairness. Challenging social studies instruction makes use of regular writing and the analysis of various types of documents, such as primary and secondary sources, graphs, charts, and data banks. It includes sources from the arts, humanities, and sciences, substantive conversation, and disciplined inquiry. Disciplined inquiry, in turn, includes the teaching of sophisticated concepts and ideas, and in-depth investigation of fewer rather than more topics, with deep processing and detailed study of each topic. Challenging social studies includes the rigorous teaching of the core disciplines as influential and continually growing tools for inquiry. Active lessons require students to process and think about what they are learning. There is a profound difference between learning about the actions and conclusions of others and reasoning one’s way toward those conclusions. Active learning is not just “hands-on,” it is “minds-on.” Students work individually and collaboratively, using rich and varied sources, to reach understandings, make decisions, discuss issues and solve problems. Student construction of meaning is facilitated by clear explanation, modeling, and interactive discourse. Explanation and modeling from the teacher are important, as are student opportunities to ask and answer questions, discuss or debate implications, and participate in compelling projects that call
for critical thinking. Powerful social studies teachers develop and/or expand repertoires of engaging, thoughtful teaching strategies for lessons that allow students to analyze content in a variety of learning modes.

Social studies

Understand how policy changes are influenced by and impact on the rights, roles, and responsibilities of individuals and communities.

Understand how ideologies shape society and that individuals and groups respond differently to these beliefs.

History

Understand that the causes, consequences, and explanations of historical events that are of significance to New Zealanders are complex and how and why they are contested.

Understand how trends over time reflect social, economic, and political forces.

Geography

Understand how interacting processes shape natural and cultural environments, occur at different rates and on different scales, and create spatial variations.

Understand how people’s diverse values and perceptions influence the environmental, social, and economic decisions and responses that they make.

1.3. TEACHING OF SOCIAL SCIENCE

The social sciences encompass diverse concerns of society and include a wide a range of content, drawn from the disciplines of history, geography, political science, economics and sociology. The selection and organisation of material into a meaningful
social science curriculum, enabling students to develop a critical understanding of society, is therefore a challenging task. The possibilities of including new dimensions and concerns are immense especially in view of the student’s own life experiences. It is important to reinstate the significance of the social sciences by not only highlighting its increasing relevance for a job in the rapidly expanding service sector, but by pointing to its indispensability in laying the foundations for an analytical and creative mindset. It is often presumed that only natural and physical phenomena lend themselves to scientific inquiry, and that knowledge areas pertaining to the human sciences (history, geography, economics, political science etc.) cannot be, by the very nature “scientific”. Hence it is necessary to recognize that the social sciences lend themselves to scientific inquiry just as much as the natural and physical sciences do, as well as to articulate the ways in which the methods employed by social sciences are distinct (but in no way inferior) to those of the natural and physical sciences. The social sciences carry a normative responsibility to create and widen the popular base for human values, namely freedom, trust, mutual respect, respect for diversity, etc. Hence social science teaching basically can be aimed at investing in a child a moral and mental energy so as to provide her with the ability to think independently and deal with the social forces that threaten these values, without losing her individuality. Social Science teaching can achieve it by promoting children’s ability to take initiative to critically reflect on social issues that have a bearing on the creative coexistence between individual good and collective good. Critical reflection pre-supposes a comprehensive curriculum in which learners – both teachers and children – participate in generating knowledge without any latent and manifest forces of coercion. It is through this non-coercive and participatory mode that children and teachers stand the
best chance of making teaching and learning interesting as well as enjoyable. The disciplines
that make up the social sciences, namely history, geography, political science and
economics, have distinct methodologies that often justify the preservation of boundaries.
The boundaries of disciplines need to be opened up and a plurality of approaches may be
applied to understand a given phenomenon. For an enabling curriculum, certain themes
that facilitate interdisciplinary thinking are required

1.4. OBJECTIVES OF TEACHING SOCIAL SCIENCE

The following are objectives of learning/teaching Social science

1. Social science also encourages the learners to realise human society which fails to
solve the certain problems although it has succeeded in achieving lot of social
sciences, provides unlimited opportunities to children for learning what society
has failed to achieve. It also tells them their own duty to the welfare and progress
of society.

2. Social science deals with the explosive quality of the present situation. Today, the
advances in science and technology are changing the physical environment and
social order at an ever increasing rate. There is more change in the world now.
To be prepared for acting intelligently in such a situation, the fluid must be made
to understand the changing nature of this world and its dynamic content, through
an integrated course of social science.

A) Objectives of teaching history

1. To promote an understanding of the process of the change and development through
which human societies have evolved to their present stage of development.
2. To promote understanding of the common roots of human civilizations and an appreciation of the basic unity of mankind.

3. Heritage to develop and appreciation of the contributions made by various cultures to the total heritage of mankind.

4. To foster the understanding that the mutual interaction of various cultures has been an important factor in the progress of mankind.

5. To facilitate the study of the history of specific countries in relation to and as parts of the general history mankind.

B) Objectives of teaching geography

1. To help students identify the varieties in the distribution of physical and economic phenomena over the surface of the earth, that are associated and which give a distinctive character to particular parts of the earth’s surface.

2. To help students analyse the ways of life of the people an over the world, their problem in the light of their varying environment and their stages of economic and technological developments.

3. To develop an appreciation of inter dependence of various geographical regions.

4. To help students make generalizations with the help of geographical concepts, the knowledge of which is of great value in understanding, evaluating and reaching decisions about world problems.

5. To acquaint the pupils with the living conditions of men in different parts of the globe.

6. To enable the pupils to acquire a knowledge of natural resources.
7. To develop in pupils an understanding of how environment and climatic factors have influenced our life.

8. To help the pupils to acquire knowledge of their physical and social environment and thus to broaden their outlook.

9. To develop in them an understanding of basic concepts, principles and theories relating to geographical phenomena.

10. To train the pupils in nature study.

11. To develop the power of thinking, reasoning, memory and power of imagination of pupils.

12. To develop their ability to draw conclusions and to generalize.

13. To develop a love for nation and to develop cosmopolitan and internationalist outlook.

14. To develop the creative talents of pupils and to develop an attitude of discovery in them.

15. To develop the skills of reading maps and globes, to develop drawing and measuring skills, and to develop the skill of using and manipulating geographical instruments.

16. To enable the pupils to appreciate the natural beauty and other physical forces.

17. To adjust human life in accordance with geographical circumstances.

18. To develop scientific attitude and to develop the ability to draw valid conclusions and independent thinking.

In fact, Geography today is a combination of art and science. Its scope and study is broad and comprehensive. Geography has well established itself as a science.
1.5. DIFFERENT METHODS IN TEACHING SOCIAL STUDIES

Many methods are adopting in the classroom transactions but few methods are discussed under

1.5.1. Inquiry Methods

These methods, like discussion methods are particularly appropriate for use in history as well as in social studies classes. They allow students to deepen their understanding of ideas, issues and wants by having to examine and interprete them in a formal way. The inquiry methods require the teacher to involve the students in activities of investigation, collection and the understanding of information. The information is used to answer questions, discuss issues or to solve problems that have been identified in the class. The pupils seek outside the classroom for opinions, facts and data that can help them to understand as the question or problem that has been presented. The methods can promote skills of observation, information gathering and, dialysis of the information. Teachers encourage students to be objective and to see varied dimensions and aspects of ideas or problem. The inquiry methods give a foundation for students to understand what is involved in making a decision or arriving at a conclusion about a body of facts that have been collected. Pupils gain necessary experience in understanding the operations of events, people and society. Some of the many kinds of inquiry those are most appropriate for secondary school opinion polls, interview, questionnaire and field trips. Pupils can practice simplified forms of these methods, each of which can be conducted in a sophisticated way as in done in adult society. This activity may prepare them for more complicated forms of inquiry methods in future and lay a foundation of Understanding for the scientific approach to information.
Advantages

(i) Inquiry methods are self rewarding. Pupils discover the facts as their own.

(ii) The pupils are actively involved in the assignment

(iii) The pupils are rewarded by being motivated.

(iv) The students remember longer because they discover the facts on their own

Disadvantages

(i) Inquiry methods are often time consuming

(ii) They are expensive in the sense that many resource materials are needed

(iii) They are not suitable for all lessons

1.5.2. Assignment Method

Assignment method in which teachers assigns certain sections of the text book to students as homework. Normally the teacher would require the students to read the assigned section and provide answers to the questions that follow. The answers provided by the students will form part of the next lesson. The teacher will call on each student to read out their answers to the questions. The modern concept of textbook assignment method.

1.5.3. Discussion Method

Discussion can be seen as talking over something from various points of view. It usually involves a group of people in a classroom setting. Discussion is an interactive process involving the teacher and the student or among the student themselves. In this case, a problem or topic for the lesson is presented for discussion while the teacher helps to direct the student views towards this objection of the lesson. Discussion method is different from lecture method, while lecture method is a one-way flow of communication
from the teacher to student. Discussion method involves new triple flow of communication
from and with the members of the class. Discussion method encourages students’ active
participation in the class. Students generate varieties of ideas, which will lead to the
solution of the problem while the teacher moderate. For a successful implementation of
discussion method, every student should have background knowledge of what is to be
discussed; otherwise, it will become a waste of time which may lead to lack of interest in the
student. In other words, using discussion method to teach a topic, the students have no
knowledge what will make the class count production. Discussion method promotes
meaningful leaching leaning of economics.

1.5.4. Planned Discussion

This method is like the assignment method where students are assigned topics to
read and provide solutions to some given tasks. The report is discussed In the classroom
and such reports required the participation of all students in the class and the teachers
carefully plan on the handling of the discussion. The teacher must handle the class
discussion democratically.

1.5.5. Group Discussion

Group discussion can be planned by the teacher in order to get the students to
interact with each other or to work together to achieve certain goals. This can be done in
two ways: we have the whole class discussion or small group discussion. In the whole
class discussion, the teachers arrange the class either in a circle, semi circle or square with
him/her at the centre and all the students facing him/her. This is usually done so that the
teacher from his/her vantage position in the centre can see and encourage all class members
to participate actively in the discussion. On the other hand, the small group discussion
requires the teacher breaking the class into small groups often students per group. The purpose being to ensure that issues or topics are effectively discussed, each group is normally made to choose a leader. The leader directs the course of the discussion while the recorder jots down all point discussed. The teacher is expected to find a helping hand to student’s discussions. At the end of the discussion, group leaders or recorders give their summaries for the class.

1.5.6 Advantage of Discussion method

It enables the teacher to have better knowledge of his student abilities and attitudes. Students are given opportunities to express their own view on issues. It affords them opportunity to be corrected when they make mistakes. It can lead to development of leadership qualities.

- It enhances individual thinking and brain
- It develops in students self control
- It helps to develop self reliance, tolerance, respect for other people's opinion and leadership skills.
- Discussion method aids in problem solving.

1.5.7. Disadvantages of Discussion Method

Discussion is uninteresting when topic is unfamiliar:

- It takes a considerable length of time because each student will be given opportunity to contribute to the discussion.
- It does not favor students with low language ability and the introverts
1.5.8. Suggestion for Effective Use of Discussion Method

- Topic for discussion should centre around those in which student have requisite background knowledge.
- The teacher should avoid a situation whereby a student or few students take over the class discussion
- The teacher should encourage student effort by giving positive reinforcement in form of praise for a good intellectual contribution, while also rejecting irrelevant comment and questions.

1.5.9. Role Play Method

Role-playing is an activity presented during a lesson to show a specific issues or situation for study and discussion. In role-playing, there is usually no prepared script to be memorized, it does not involve elaborate preparation and there may be no rehearsals. Planning a role-playing involves selection of a problem or issue of interest and students simply act the roles intended to portray by the play. Roles must not be forced on any students. It is important to discuss the role-play after presentation. Asking relevant question is in order to highlight the learning characters. Role-playing is useful for development of positive attitudes towards social issues and modifying the behaviours of learners. It also helped to develop students’ vocabulary and the skill of expressions. The main disadvantage of role-playing is stigmatization of students who play negative roles.

1.5.10. Field Trip/Excursion Method

Field trip is any activity carried out by a group of learners outside the classroom under a close supervision of the teacher. It involves taking students outside the classroom setting to have first hand experience of what happens in our environment or real life.
situation. Field trip/excursion provides outdoors experiences and observations from which the students learn. It could cover a few hours and could last as long as a couple of weeks. Field trip could take the form of a mere walk from the school to public places of interest such as the kings' place, railway station, airport and post-office all within the neighborhood. Experiences acquired during field trip are usually long lasting and cannot be easily forgotten by the students. In preparing for a field trip, the purpose must be clearly stated; permission must be obtained from the school authority, parents and the place of visit. If a trip can last more than one day, adequate preparation must be made for accommodation, feeding and other facilities. It is also essential to take along a first aid box. The teacher must carefully supervise the student during the trip. The assistance of a guide is also needed. After the trip students should discuss and report their findings. Field trip/excursion provides opportunities for direct observations and develops the skill for keen observation in the students. However, it is time consuming; it could be expensive and disruptive especially when the field trip lasts several days.

1.6. TEAM-BASED LEARNING - OVERVIEW

Team-based learning (TBL) is an instructional strategy organized around team activities. The premise of TBL is to promote active and effective learning through small group interactions across a semester (Michaelsen et al., 2002). Courses that are suitable for TBL contain a significant body of information (content), which students need to understand, and involve problem solving, answering questions and resolving issues through team activities. Sibley (2008) said TBL as an alternative to lecturing in large class settings. Most of the learning experiences occur when working in a team during in-class interactions (Michaelsen et al., 2002). Team-based learning approaches are grounded
in theory and promote active learning and participation. However, implementing TBL approaches presents various challenges. In TBL, the amount of time spent on completing the readiness assessment tests subtracts from the interactions. In addition, the in-class activities completion time may also vary per team, leaving limited space for general inter-team dialogues, which are often engaging and allow the instructor to clarify content and learning material. Computer-mediation supports better time management practices, since many activities can be completed independently in an asynchronous context, at the student own pace. Students need more study time to have the unlimited access to materials available in an online repository. Taking advantage of a shared-repository, which extends classroom activities and better consolidates and codifies outcomes, has been one of the main drivers of the authors’ exploration of TBL in hybrid classes, in which students meet both face-to-face and online, as described.

1.6.1. Team Work

Team work activities are frequently incorporated in upper level courses in Information System programs. However, in introductory programming classes there is a predominance of emphasis on individual learning activities. Most beginning programming classes do not incorporate collaborative practices. Frequently, the practice of students working together on a programming assignment is considered as “cheating”. Learning to program is generally considered to be difficult and challenging for most students, who very often experience high levels of frustration and isolation. Some of the challenges that beginner programmers face may be overcome by allowing students to collaborate with their peers. The pedagogical advantages of student interaction in collaborative construction of knowledge are grounded in the social constructivist perspective of
learning. Based on the constructivist pedagogical approach, actual learning takes place when students actively construct their knowledge through social interactions with their peers. Knowledge is discovered and constructed through communication and collective sense making.

1.6.2. Co-operative learning differs from Team based learning

Through the past several decades, the use of group and collaborative assignments in classroom settings has increased. The popularity of group work in college courses has increased as instructors see it as a way to facilitate student learning through focused discussion and interaction to better prepare students in ways that reflect the reality of the workplace with collaborative work and team projects a growing dimension of organizational work. Understanding the crucial differences between cooperative learning and team-based learning is necessary in developing authentic team-based learning activities. Cooperative learning can be characterized by three things: (1) using assigned roles within groups; (2) having the teacher monitor the groups to see how they are handling the content and how well the groups are working; and (3) spending time after the small-group exercise to process the small-group activity (6). Team-based learning differs from cooperative learning in that it “relies on the teams themselves to monitor individual and group performance and to improve performance as necessary” (6). Prompt, discriminating feedback on individual and team performance becomes the key responsibility of the teacher when using team-based learning. Merely creating groups and mandating group assignments may involve cooperative learning but does not necessarily enhance students’ teambuilding skills or reflect the actuality of workplace collaboration. More than just a tool or technique instructors utilize from a repertoire of instructional methods, team-based
learning is an “instructional strategy that is designed to (a) support the development of high-performance teams, and (b) provide opportunities for those teams to engage in significant learning tasks” (4). As an instructional strategy, Michaelson’s team-based learning is a semester.

1.7. FORMING AND MANAGING GROUPS

The critical components in forming and managing groups used for team-based learning consist of the following three issues: (1) how the groups are selected; (2) group size; and (3) duration of groups.

Selection of Groups

Research suggests that groups formed by self-selection are the least effective while diverse groups (assigned by the teacher) are most effective. Self-selected groups tend to be more homogenous and lack the resources and diversity necessary to become highly productive (3). In Michaelson’s team-based approach the instructor assigns groups by assessing those attributes deemed essential to the success of group projects. Groups are formed by distributing students’ skills, assets, and liabilities across groups.

Group Size

Research suggests that groups large enough to have diverse experience and knowledge but small enough to facilitate discussion and involvement by each member is preferred—generally about five to seven students in each group is ideal (5, 10).

Duration of Groups

Michelson recommends that groups be permanent; working together for an entire semester rather than changing from assignment to assignment (6, 7). Diverse groups (teacher assigned) have a greater potential to become high performance teams, but the
diversity may have an initial negative impact in performance (12, 1). Using groups who stay together for the whole semester provides for the needed time for diverse group members to become cohesive and results in higher performance levels (6). Research indicates that diverse groups outperform homogeneous

1.8. PROMOTING ACCOUNTABILITY

Key to the success of any team is accountability. Once groups have been formed, several strategies can be used to ensure that individual group members feel accountable to the group (6). Michaelson’s approach includes five specific methodologies or approaches to promoting team accountability: (1) setting grade weights; (2) peer assessments; (3) Readiness Assessment Tests (RATs); (4) group assignments; and (5) adequate and timely feedback.

1.8.1. Setting Grade Weights

Michaelson’s team-based approach requires students (in their groups) to collectively set grade weights for assignments and exams, helping them feel more in control of the class and the consequences of their actions. Having students determine the grade weights for assignments results in increased accountability and overall satisfaction with the course.

1.8.2. Readiness Assessment Testing (RATs)

One major challenge in achieving accountability for any group-based activity is minimizing the potential for a student to freeload and still receive the same grade as everyone else in their group. Since effective group work presupposes thorough individual preparation and individual responsibility to do so, the team-based approach uses a Readiness Assurance Process wherein individual and group RATs are administered to
promote individual preparedness while assessing students both individually and in groups.

RATs are typically multiple choice or true/false tests based on reading assignments that are not discussed in class. Students’ demonstrate their comprehension of the reading assignment first by taking the RAT individually using a Scantron form. When all students are finished taking the test and have turned in their answer sheets, students take the same test again immediately in their groups (each group is given an additional answer sheet). While groups are taking the test, the teacher is processing the Scantron forms to provide individual results to students as soon as they have completed their group test. Through the process of taking the RATs, students are accountable to the teacher (both individual and group test scores count toward the students’ final grades) as well as accountable to their teammates, since each student must discuss and defend answers to reach a correct consensus answer (7). In the process, the group discussion often clarifies the reading material and minimizes the need for lengthy lecture. The immediate knowledge-of-results design of the RAT system also provides students with higher satisfaction in the assessment process combined with the increased accountability.

1.8.3. Group Assignments

In conjunction with the RAT tests, well-designed group assignments can promote accountability as well. Rather than long papers or presentations which lend themselves to the “divide-and-conquer” approach, effective collaborative assignments require students to apply critical thinking and problem solving skills to come up with workable solutions. The solutions to the problem require the input and ideas of every member of the group. For example, with a problem-based scenario, a group may be given a short case that outlines several problems with a specific information system. The case may require the
group to analyze the causes of the problem, rank the causes from most critical to least critical, and then provide a short solution to the problem. Having the same problem for each of the groups, requiring them to make specific choices, and inviting simultaneous reporting of solutions are keys to promoting true collaboration among students.

1.8.4. Adequate and Timely Feedback

Key to most any learning situation is providing adequate and timely feedback to students so they may assess their own understanding of concepts. The use of the RATs is an example of a method where feedback to individual students is almost immediate through use of Scantron forms. For the group tests, the authors have followed Michaelson’s suggestion in using the Immediate Feedback Assessment Technique form (IF-AT), developed by Michael Epstein (2). The IF-AT form consists of four multiple choice options that require students to scratch off, similar to a lottery ticket, a covering to reveal the correct answer (indicated by an asterisk “*”). The method provides immediate feedback and creates valuable discussion as groups decide on their answer. Immediate feedback on application-focused assignments is also important. Rather than having major projects that students submit for later grading, some problem solving situations where groups select from several options to make a “best” choice allows groups to report choices simultaneously and allows discussion and feedback as to the benefits of a specific choice. In this manner, students get reactions from other groups and from the instructor about their reasoning.

1.8.5. Team-based learning

Team-based learning (TBL) was first introduced during the year 1970 to support classroom learning in the US (Michaelsen, Knight, & Fink, 2004). The growing interest
in TBL worldwide is evidenced by an annual conference, a rich website (www.teambasedlearning.org), and a considerable amount of published research (Haidet et al., 2012). TBL proponents claim that this teaching–learning approach can be adopted by individual academics in a single course through to multiple academics systematically teaching across an entire program or school; an example of the latter is the Duke-NUS Graduate Medical School Singapore (Krishnan, 2011). TBL involves students working intensively in small groups and, if all goes according to plan, the groups become transformed into effective learning teams. The following are the guiding principles for this transformation (Haidet et al., 2012; Michaelsen et al., 2004): _ teams are formed from within each class to ensure capabilities and assets are fairly distributed _ membership of teams is sustained for the entire duration of the course _ teams do the overwhelming majority of their group work in class _ learning and assessment activities are structured so that students make increasingly difficult decisions _ relevant and timely feedback is given (preferably immediately), primarily by peer team members and other teams undertaking the structured activities _ technologies and resources are used to support feedback quality and timeliness _ assessment is a combination of individual and team performance _ peer review is an essential element in assessment of each student’s performance TBL incorporates three phases of activities for each learning module: readiness (also known as preparation), application, and assessment. A description of each follows. In the readiness phase, students: a) before class, read assigned material; b) on arriving in class, take an individual multiple-choice test on foundational concepts (known as an individual readiness assurance test or IRAT); c) in pre-assigned teams, answer the same IRAT questions collaboratively in the team readiness assurance test (TRAT); d) as
a team, consider each member’s IRAT choice until they can commit to an agreed team answer; e) receive feedback on answers via an immediate feedback assessment technique (IFAT) card; f) in the event of a wrong answer, the team continues to debate until members reach consensus and identify the correct answer; struggling to reach a consensus decision on each answer promotes peer teaching and learning; g) when the TRAT activity is completed, teams can write an appeal, basing their justification on assigned readings. At this point students receive feedback from academics, who clarify any remaining learning gaps (from test results and their observations of intra-team discussion). Teams then move into the second or application phase when team members apply previously learnt concepts to decide on the best solution to difficult and authentic problems. Provided problems satisfy four conditions, this phase is for intense debate, triggering peer teaching and substantial feedback for learning. The (4 Ss) conditions are: the problem is significant in terms of difficulty and interest to engage students; each team must make a specific choice between a limited set of realistic solutions; teams address the same problem and report their decision simultaneously. Debate is encouraged, first within each team as the team reaches consensus, then later in the whole-class context as teams defend their decisions following the simultaneous revelation of preferred team choice. In the assessment phase, students: demonstrate learning acquired from individuals’ preparation for IRATs, peer teaching during TRATs, and team-based practice applications in various summative assessment tasks such as exams. Individuals’ contribution to team performance and maintenance is taken into account in the overall assessment (based on peer review), with academic moderation as appropriate.
1.9. CHARACTERISTICS OF TBL

The followings are characteristics of Team Based Learning

It is deliberately focused on students experiencing the learning

Here academics are facilitators rather than dispensers of information

In the class time, the focus is on students using concepts to solve authentic problems, rather review. Carless (2009) suggests that academics are reluctant to take risks in low-trust contexts because of a fear of appearing incompetent. Instead, they prefer to use teaching methods that have perceived reliability over alternatives with more validity. Other authors have found that workloads and stress, which are experienced in many academic contexts, can reduce incentives to innovate (Ewing et al., 2008; Macdonald & Carroll, 2006; Winefield et al., 2003). However, Cummings, Maddux, and Richmond (2008) found that academics became more open to innovation once workload issues, such as compensation for time in training and implementation, had been resolved. Osika, Johnson, and Buteau (2009) found that adoption was affected by prior success, compatibility with personal teaching style, and a perception of competitive necessity. Of course researchers have examined adoption using different frameworks. Bain, McNaught, Mills, and Lueckenhagen (1998) studied the influence of conceptions of teaching on the design of e-learning, and proposed a complex framework to analyse this. Lueddeke (2003, p. 218) used a student-centred versus teacher-driven framework and found that those who conceive of teaching as ‘helping students develop or change concepts’ are more likely to adopt interactive classroom approaches than those conceiving teaching as ‘transmitting information to students’. Elton (2003) argues for a more comprehensive approach in analysing adoption decisions made in higher education.
institutions. The Rogers (2003) diffusion of innovation model has been widely acclaimed as a useful construct for understanding adoption decisions. Rogers starts out with the notion of diffusion, which he defines as ‘the process in which an innovation is communicated through certain channels over time among the members of a social system’ (Rogers, 2003, p. 4); then, in his model, he concentrates on the related concept of adoption (of innovation). He categorises people in one of five groups based on the speed with which they adopt a potential innovation: innovators, early adopters, early majority, late majority, and, finally, laggards. Rogers believes that the rate of adoption cannot be explained solely by the objective advantages of an innovation; rather, adoption is keyed to the fulfilment of the following five key attributes, as perceived by the potential adopter:

Relative advantage – the degree to which an innovation is perceived to be superior to what it replaced

Compatibility – the degree to which an innovation is perceived to be consistent with the existing values, past experiences, and needs of potential adopters

Complexity – the degree to which an innovation is perceived as difficult to understand and use

Trialability – the degree to which an innovation may be experimented with on a limited basis before a decision to adopt the innovation fully is made

Visibility – the degree to which the results of an innovation are observable to other potential adopters (2003, p. 16).

To sum up TBL, an innovation is more likely to be adopted: the greater its perceived relative advantage, the more compatible it is with existing practices and values, the less complex it is, the easier it is to trial without fully committing to it, and the more
visible it is. Rogers’ model has been applied, critiqued and extended. For example, Geoghegan (1995) applied it to educational technology, identifying a chasm between early adopters and the mainstream majority. Geoghegan concluded that the chasm is a result of disparate social and psychological factors, and the inability of adopters to muster support from qualitatively different groups of would-be adopters. Anderson, Varnhagen, and Campbell (1998), in their study of a large Canadian university, reached a similar conclusion. McLoughlin (2000), Wilson and Stacey (2004), and McLean (2005) used the Rogers model to review and enhance the take-up of academic development activities. Freeman, Bell, Comerton-Forde, Pickering, and Blayney (2007) applied it to the adoption of audience response systems. And Samarawickrema and Stacey (2007) and Bell and Bell (2005) used it to analyse the implementation of virtual learning environments. However, Frambach and Schillewaert (2002) questioned whether the model was comprehensive enough to assess organisational decisions to adopt, arguing that the model would be improved with the addition of internal organizational characteristics and external factors. A further expansion to the Rogers model emerged from Bell and Bell (2005, p. 652), who identified administrative and other support staff as potentially critical to successful adoption of innovation in a higher education setting because their engagement ‘highlights problems that may then be addressed in an institution-wide response, and aids the identification and dissemination of good practice’.

1.10. GUIDING PRINCIPLES OF TBL

The following are the guiding principles for this transformation (Haidet et al., 2012; Michaelsen et al., 2004):
• teams are formed from within each class to ensure capabilities and assets are fairly distributed
• membership of teams is sustained for the entire duration of the course
• teams do the overwhelming majority of their group work in class
• learning and assessment activities are structured so that students make increasingly difficult decisions
• relevant and timely feedback is given (preferably immediately), primarily by peer team members and other teams undertaking the structured activities
• technologies and resources are used to support feedback quality and timeliness
• assessment is a combination of individual and team performance
• peer review is an essential element in assessment of each student’s performance

1.11. THREE PHASES OF TBL

TBL incorporates three phases of activities for each learning module: readiness (also known as preparation), application, and assessment. A description of each follows.

In the readiness phase, students: a) before class, read assigned material; b) on arriving in class, take an individual multiple-choice test on foundational concepts (known as an individual readiness assurance test or IRAT); c) in pre-assigned teams, answer the same IRAT questions collaboratively in the team readiness assurance test (TRAT); d) as a team, consider each member’s IRAT choice until they can commit to an agreed team answer; e) receive feedback on answers via an immediate feedback assessment technique (IFAT) card; f) in the event of a wrong answer, the team continues to debate until members reach consensus and identify the correct answer; struggling to reach a consensus decision on
each answer promotes peer teaching and learning; g) when the TRAT activity is completed, teams can write an appeal, basing their justification on assigned readings. At this point students receive feedback from academics, who clarify any remaining learning gaps (from test results and their observations of intra-team discussion). Teams then move into the second or application phase when team members apply previously learnt concepts to decide on the best solution to difficult and authentic problems. Provided problems satisfy four conditions, this phase is a haven for intense debate, triggering peer teaching and substantial feedback for learning. The (4 Ss) conditions are: the problem is significant in terms of difficulty and interest to engage students; each team must make a specific choice between a limited set of realistic solutions; teams address the same problem and report their decision simultaneously. Debate is encouraged, first within each team as the team reaches consensus, then later in the whole-class context as teams defend their decisions following the simultaneous revelation of preferred team choice.

In the assessment phase, students: demonstrate learning acquired from individuals’ preparation for IRATs, peer teaching during TRATs, and team-based practice applications in various summative assessment tasks such as exams. Individuals’ contribution to team performance and maintenance is taken into account in the overall assessment (based on peer review), with academic moderation as appropriate. Several key characteristics of TBL stand out: _ there is a deliberate focus on students’ experience

1.12. TEACHING STYLE IN TBL

Team-Based Learning (TBL) emphasizes a teaching style that is learner-centered but instructor-led group-learning. It uses a very structured individual and group out-of-class, automatic, independent learning process, and it requires in-class engagement with a
team to solve problems through communication and teamwork skills (Searle et al., 2003; 'Malley et al., 2003). TBL has been used in education for many disciplines, including medicine, veterinary science, physician's assistantship, and business (Parmelee, 2010), but it is relatively new in nursing. Researchers (Chung et al., 2009) have evaluated the effect of TBL in medical ethics education and found that students demonstrated more engagement and enjoyment in the course than was true with traditional didactics. In Chung et al.'s study, the students' significantly higher group test scores than the individual test scores demonstrated the positive effect of collaborative learning. More importantly, TBL improved the performance of academically weaker students. Nieder et al. (2005) used TBL in a medical gross anatomy and embryology course and reported that the individual performance was a good predictor of examining the effect of TBL on learning outcomes. Nieder et al. pointed out that TBL was a superior method for small group learning since students did small group discussions on test questions and did teacher-led patient scenario group discussions after individual tests in the class. Each group was given patient situations or challenging problems and had to present discussion results in the class (Kelly et al., 2005; Clark et al., 2008). TBL also benefited academically at-risk students the most because these students were forced to study more consistently and were given opportunities to develop.

1.13. TBL IS CONSTRUCTIVIST COURSE DESIGN

Team-Based Learning (TBL) is a constructivist course format designed to shift the focus of classroom time from instructor-led lectures and discussions to interactive small group sessions captained by students, all without decreasing class sizes, increasing instructor numbers or increasing class time (Michaelsen & Sweet, 2008a). With TBL,
students review material prior to class in order to be prepared for deeper discussions and active learning during class. Units generally start with short tests (readiness assessment tests or RATs) covering basic material from the assigned readings. Students take the tests individually (IRAT) and then as a group (GRAT) and get immediate feedback on their responses. Misconceptions and errors are clarified with a short lecture. During the remaining sessions for the unit, students work with their teammates in carefully balanced groups of 6-7 members on complex real-world problems that require higher level thinking skills. The application exercises are designed to follow the “4S” guidelines: centered on a problem of significance to the students, all groups should be working on the same problem, students must make a specific choice, and groups should report their choices simultaneously (Michaelsen & Sweet, 2008b). The instructor guides the process to ensure the important components are “discovered” and applied appropriately. Students are held responsible for the preclass work with in-class assessments and via peer feedback and reviews (Sweet & Pelton-Sweet, 2008). Repeating the knowledge acquisition and application cycle through the readiness assessment tests and complex problems generally leads to increased understanding and retention (Pileggi & O’Neill, 2008; Goldberg & Dintzis, 2007), while group discussions encourage the development of teamwork, better communication and enhanced problem solving as well as engaging the learners and creating an active learning environment (Haidet, O’Malley, & Richards, 2002; Giuliodori, Lujan, & DiCarlo, 2006; Pickrell, Boyer, josotl.indiana.edu).
1.14. IMPLICATIONS OF TBL

1. The most important factor in the adoption of teaching innovations is the need for the innovation to be culturally compatible with a potential adopter. Student-centred innovations are compatible with teachers favouring that approach to teaching. However, all is not lost when there is a mismatch between the innovation and the dominant departmental teaching culture. In the case study, when the latter occurred, the provision of academic professional development and authorisation of expenditure for technologies and other support resources from beyond the department alleviated some of this dissonance. Without adequate support, potential adopters are unlikely to adopt TBL – especially if they need to shift philosophically and practically from an information transmission, teacher-centred approach.

2. Whereas early adopters do not need much support, the mainstream majority do (Geoghegan, 1995). Only one respondent reported that TBL had been mainstreamed following her/his early adoption; whereas 49% of respondents reported that TBL in their workplace was entirely dependent on their take-up and ongoing use. Furthermore, 50% reported that they had gone solo with early trials, with little in the way of institutional support to face implementation challenges.

3. It would seem that upon adoption of more substantive and complex innovations an important aspect of support is academic development on ‘nitty-gritty’ matters, such as devising suitable questions and applying appropriate assessment. This concern corresponds with other TBL research (e.g. Shellenberger et al., 2009) and research about similar student centred innovations that involve writing additional questions to engage students (Freeman et al., 2007).
1.15. STATEMENT OF THE PROBLEM

Students of standard IX had hurdles in learning Social science in the conventional methods. Learners of different level in standard IX of Equity educational syllabus in Tamilnadu text book had problems in learning Social science by practicing conventional methods of teaching. Students scored minimum marks by the conventional methods which discouraged the learners. Researcher tried to eliminate the problems of the students through this study. Hence the researcher selected the topic entitled **Effectiveness of Team Based Learning in Learning Social science at standard IX.**

1.16. NEED OF THE STUDY

At present, the social sciences as a course of study tend to be considered as non-utility subjects and are given less importance than the other subjects. However in real sense, they provide the social, cultural and analytical skills required to adjust to an increasingly interdependent world and to deal with political and economic realities. It is believed that the social sciences merely transmit information and are text centered and moreover lecture method is followed in most schools. Learning of any subject only through lecture method is neither attain the educational objectives (i.e., Taxonomy of educational objectives: cognitive, affective and psycho motor) nor meet the current challenges of education. Conventional methods of teaching were not fruitful to the learners at secondary level in learning social science. Conventional methods failed to encourage the learners in learning social science. Hence the researcher identified the learner centred- method named Team Based Learning for eliminating difficulties and increasing the scoring in social science.
1.17. OPERATIONAL DEFINITION

Effectiveness - It refers to Team Based learning which is successful in accomplishing learner’s educational objectives in social science.

Team Based Learning – Refers to Learners-centred group leaning of learning social science

Social science – Referred the syllabus given for standard IX in Tamilnadu text book society.

Standard IX - After passing eleventh standard in Tamilnadu

1.18. GENERAL OBJECTIVES

1. To find out the problems of the students in learning social science through conventional methods

2. To frame the activities and find out the effectiveness of Team Based Learning in learning social science at standard IX

1.19. SPECIFIC OBJECTIVES

1. To find out whether there is any significant difference in achievement mean score between the Pretest of Control groups and the Post- test of control groups in learning Social science among the students of standard IX.

2. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control groups and the Pre- test of Experimental groups

3. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of Experimental groups and the Post- test of Experimental groups

4. To find out whether there is any significant difference in achievement mean score of the students between the Post-test of control groups and the Post- test of Experimental groups.
5. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group with respect to the schools of (a) Government (b) Aided and (c) Matriculation.

6. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group with respect to the schools of (a) Government (b) Aided and (c) Matriculation.

7. To find out whether there is any significant difference in achievement mean score of the students between the Post-test of control groups and the Post-test of Experimental groups with respect to the schools of (a) Government (b) Aided and (c) Matriculation.

8. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control groups and the Pre-test of Experimental groups with respect to the schools of (a) Government (b) Aided and (c) Matriculation.

9. To find out whether there is any significant difference in achievement mean score among the students of three types of school involved in the Pre-test of control groups in learning Social science at standard IX.

10. To find out whether there is any significant difference in achievement mean score among the students of three types of school involved in the Post-test of control groups in learning Social science at standard IX.

11. To find out whether there is any significant difference in achievement mean score among the students of three types of school involved in the Pre-test of Experimental groups in learning Social science at standard IX.
12. To find out whether there is any significant difference in achievement mean score among the students of three types of school involved in the Post-test of Experimental groups in learning Social science at standard IX.

13. To find out whether there is any significant difference in achievement mean score Pre-test of control group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation.

14. To find out whether there is any significant difference in achievement mean score Post-test of control group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation

15. To find out whether there is any significant difference in achievement mean score Pre-test of Experimental group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation.

16. To find out whether there is any significant difference in achievement mean score Post-test of Experimental group between
 (a) Government school and Aided school.
(b) Government school and Matriculation school

(c) Aided school and Matriculation

17. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

18. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

19. To find out whether there is any significant difference in achievement mean score of the students between the Post-test of control groups and the Post-test of Experimental groups with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

20. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control groups and the Pre-test of Experimental groups with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

21. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group in Government School with respect to (a) Nile Valley Civilization
(b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

22. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group in Government School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

23. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group in Aided School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

24. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group in Aided School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

25. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group in Matriculation School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.
26. To find out whether there is any significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group in Matriculation School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

27. To find out whether there is any significant difference in achievement mean score of the students between the Post-test of Experimental group and Retention test with respect to (a) Government School (b) Aided School and (c) Matriculation school.

1.20. HYPOTHESES

The following twenty seven null-hypotheses were framed for the study

1. There is a significant difference in achievement mean score between the Pretest of Control groups and the Post-test of control groups in learning Social among the students of standard IX.

2. There is a significant difference in achievement mean score of the students between the Pre-test of control groups and the Pre-test of Experimental groups.

3. There is a significant difference in achievement mean score of the students between the Pre-test of Experimental groups and the Post-test of Experimental groups.

4. There is a significant difference in achievement mean score of the students between the Post-test of control groups and the Post-test of Experimental groups.

5. There is a significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group with respect to the schools of (a) Government (b) Aided and (c) Matriculation.
6. There is a significant difference in achievement mean score of the students between
the Pre-test of Experimental group and the Post-test of Experimental group with
respect to the schools of (a) Government (b) Aided and (c) Matriculation

7. There is a significant difference in achievement mean score of the students between
the Post-test of control groups and the Post-test of Experimental groups with respect
to the schools of (a) Government (b) Aided and (c) Matriculation.

8. There is a significant difference in achievement mean score of the students between
the Pre-test of control groups and the Pre-test of Experimental groups with respect to
the schools of (a) Government (b) Aided and (c) Matriculation.

9. There is a significant difference in achievement mean score among the students of
three types of school involved in the Pre-test of control groups in learning Social
science at standard IX.

10. There is a significant difference in achievement mean score among the students of
three types of school involved in the Post-test of control groups in learning Social
science at standard IX.

11. There is a significant difference in achievement mean score among the students of
three types of school involved in the Pre-test of Experimental groups in learning
Social science at standard IX.

12. There is a significant difference in achievement mean score among the students of
three types of school involved in the Post-test of Experimental groups in learning
Social science at standard IX.
13. There is a significant difference in achievement mean score Pre-test of control group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation.
14. There is a significant difference in achievement mean score Post-test of control group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation
15. There is a significant difference in achievement mean score Pre-test of Experimental group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation.
16. There is a significant difference in achievement mean score Post-test of Experimental group between
 (a) Government school and Aided school.
 (b) Government school and Matriculation school
 (c) Aided school and Matriculation
17. There is a significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

19. There is a significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

20. There is a significant difference in achievement mean score of the students between the Post-test of control groups and the Post-test of Experimental groups with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

21. There is a significant difference in achievement mean score of the students between the Pre-test of control groups and the Pre-test of Experimental groups with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

22. There is a significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group in Government School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.
23. There is a significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group in Government School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

24. There is significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group in Aided School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

25. There is a significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group in Aided School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

26. There is a significant difference in achievement mean score of the students between the Pre-test of Experimental group and the Post-test of Experimental group in Matriculation School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.

27. There is a significant difference in achievement mean score of the students between the Pre-test of control group and the Post-test of Control group in Matriculation School with respect to (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.
28. There is a significant difference in achievement mean score of the students between the Post-test of Experimental group and Retention test with respect to (a) Government School (b) Aided School and (c) Matriculation school.

1.21. VARIABLES USED IN THE STUDY

Independent Variables: Team Based Learning. **Dependent Variables:** 1) Problem inventory score 2) Achievement scores in Social science. 3) Scores of Retention test.

Intervening Variable: Hesitation.

1.22. DELIMITATIONS OF THE STUDY

- The study was confined to Social science Text book of standard IX in Tamilnadu state board syllabus only.
- The sample covered only IX Standard Students of selected schools in Coimbatore district only.
- The study confined only the following concepts in social science (a) Nile Valley Civilization (b) Mesopotamian Civilization (c) Early Chinese Civilization (d) Europe Greek Civilization and (e) Roman Civilization.
- The homogeneity among the control and the experimental groups was established with respect to the scores as measured by the monthly test.

1.23. METHODOLOGY IN BRIEF

Equivalent group Experimental Method was adopted in the study. **Sample:** Three types of Higher Secondary schools in Coimbatore district were selected for the study. One hundred and eighty students studying in standard IX were selected from three types of Higher secondary schools in equal strength of both control group and experimental
group in the study. **Tools:** Three researcher-made tools were used in the study. One was a problem inventory towards the teachers, the second tool was achievement test which was used for testing the entry level of the students (Pre-test) and the effectiveness of Team Based Learning in learning Social science (Post-test) among the students and the third tool was Retention test which was used to find out the retention of the Team Based Learning for learning Social science and fourth was Case study. Pilot study was administered for the both tools. After establishing Reliability and validity of the both tools, they were considered for the Final study.

1.24. DATA COLLECTION FOR THE FINAL STUDY

Three types of higher secondary schools in Coimbatore district were considered for identifying the problems of the students in learning in Social Science at standard IX. The researcher approached Headmasters and the Managements of the three types of schools for collecting data and conducting the Team Based Learning and conventional methods in teaching Social Science. Researcher planned the activities for the Social Science and discussed with the experience teachers of three types of schools. After preparation of the activities and teaching learning materials, it was validated by the Headmasters of different schools and teachers of those who were handling Social science at standard IX. Achievement test was prepared on the basis of the blueprint. Selected three types of Schools were selected with the acknowledgement of Headmasters and Management for conducting the study to find out the effectiveness of conventional method and impact of using Team Based Learning in learning Social Science.
1.25. STATISTICAL TECHNIQUE USED IN THE STUDY

Descriptive statistics and inferential statistics were adopted in the study. t-test, ANOVA test and Saffe post hoc test were adopted as statistical techniques for the study. SPSS package was used for data analysis.

1.26. CONCLUSION

Acquiring knowledge in Social science is necessary at High school level for understanding the culture, economic conditions, social mobilization, different revolutions etc. Students of standard IX faced problems in scoring more marks in Social science. Learners got less mark in Social Science in Equity education of Tamilnadu syllabus by using conventional methods of teaching. Using an innovative method such as Team Based Learning can attract the learners and eliminating the hurdles in learning Social science.

1.27. CHAPTERISATION

Chapter-I

It deals with Introduction, Objectives Teaching of Social studies, Teaching of Social science, Objectives of Teaching Social science, Different Methods of Teaching Social science, Team Based learning, Forming and Managing groups, Promoting Accountability, Characteristics of TBL, Guiding Principles, Three phases of TBL, Teaching styles in TBL, Implication of TBL and Need of the study, Variables, Objectives of the study, Hypothesis of the study, Methodology in Brief, Conclusion and Chapterisation.

Chapter-II

Review of related studies illuminates the Team learning and Team Based Learning in social science and other subjects also.
Chapter-III

Methodology chapter highlights the research methodology adopted in the study. This chapter is consisted of methodology adopted in the study, selected sample for the study, Tools used in the study, establishing validity and reliability of the tools, Data collection and Statistical techniques adopted. It shows the appropriate way of selecting methodology and procedure of the study.

Chapter-IV

This chapter discusses the using of analysis, interpretation, finding the mean differences between Experimental groups and controlled groups, Case study, retention test and effectiveness of Team Based Learning.

Chapter- V

This Chapter recapitulates what has been done before; appropriate findings and Educational implications and suggestions for further research.