Chapter-1 Introduction to Reliability

1.1 Introduction

1.2 Modes of failure and Causes

1.3 Designs for Reliability

1.3.1 Element Redundancy

1.3.2 Unit Redundancy

1.3.2.1 Active Redundancy

1.3.2.2 Stand by Redundancy

1.4 Types of System Reliability Models

1.4.1 Series Configuration

1.4.2 Parallel Configuration

1.4.3 Mixed Configuration

1.4.4 Series - Parallel Configuration

1.4.5 Parallel – Series Configuration

1.4.6 K – Out – Of – M – Configuration

1.4.7 Non Series – Parallel Configuration

1.4.8 Complex Configuration

1.4.9 Coherent System

1.4.10 Miscellaneous & General System

1.5 Reliability Optimization through Redundancy

1.5.1 Parallel Redundancy, Given the Set of Constraints
1.5.2 Parallel Redundancy, No Specific Set of Constraints 21
1.5.3 Standby Redundancy, Given Set Of Constraints 21
1.5.4 Stand by Redundancy, No Specific Set of Constraints 21

1.6 Problem under Consideration 22

1.6.1 Statement of the Problem 22
1.6.2 Assumptions of the Model 23
1.6.3 Mathematical Model 23
1.6.4 Significance of equations 24

1.7 Organization of the thesis 26

Chapter-2 Literature Survey 27

2.1 Introduction 28

2.2 Literature on System Reliability Models with Redundancy 29

2.2.1 Classification of System Reliability Models With Redundancy (By System Configuration) 29

2.2.1.1 Series Configuration 30
2.2.1.2 Parallel Configuration 31
2.2.1.3 Series-Parallel Configuration 31
2.2.1.4 Parallel-Series Configuration 32
2.2.1.5 Stand By Configuration 33
2.2.1.6 Complex Configuration 33

2.2.2 Classification of System Reliability Models With Redundancy (By Optimization Techniques) 34

2.2.2.1 Integer Programming 35
2.2.2.2 Dynamic Programming 35
2.2.2.3 Maximum Principle 36
2.2.2.4 Linear Programming 36
2.2.2.5 Geometric Programming 36
2.2.2.6 Sequential Unconstrained Minimization Technique 37
2.2.2.7 Modified Sequential Simplex Pattern Search 37
2.2.2.8 Lagrangean Multipliers and Kuhn-Tucker Conditions 37
2.2.2.9 Generalized Lagrangean Function 37
2.2.2.10 Generalized Reduced Gradient 38
2.2.2.11 Heuristic Approach 38
2.2.2.12 Parametric Approach 38
2.2.2.13 Pseudo Boolean Programming 38

2.2.3 Literature of Integrated Reliability Models For Redundant Systems 39

2.3 Summary and Conclusions 40

Chapter-3 Integrated Reliability Models for Redundant Systems With Multiple Constraints-Lagrangian Approach 41

3.1 Introduction 42
3.2 Lagrangean Method for Equality Constraints 43
3.3 Langrangean Method for Inequality Constraints 43
3.4 Reliability-Cost Relation ship 45

3.5 Procedure for Problem Formulation for Function $r_j = \left(\frac{c_j}{b_j}\right)_d^{1}$ 46

3.5.1 Lagrangean Method 46

3.5.2 Case Problem 50
 3.5.2.1 Constants 50
 3.5.2.2 Cost Constraint Details (Without X_j Rounding Off) 51
 3.5.2.3 Weight Constraint Details (Without X_j Rounding Off) 51
 3.5.2.4 Volume Constraint Details (Without X_j Rounding Off) 52

3.5.3 Reliability Design with X_j Rounding Off 52
 3.5.3.1 Reliability Design Relating To Cost with Rounding Off 53
 3.5.3.2 Reliability Design Relating To Weight with Rounding Off 53
 3.5.3.3 Reliability Design Relating To Volume with Rounding Off 54

3.6 Procedure for Problem Formulation for Function $c_j = a_j \exp\left(\frac{h_j}{1 - r_j}\right)$ 55

3.6.1 Lagrangean Method 55
3.6.2 Case Problem

3.6.2.1 Constants

3.6.2.2 Cost Constraint Details (Without X_j Rounding Off)

3.6.2.3 Weight Constraint Details (Without X_j Rounding Off)

3.6.2.4 Volume Constraint Details (Without X_j Rounding Off)

3.6.3 Reliability Design with X_j Rounding Off

3.6.3.1 Reliability Design Relating To Cost with Rounding Off

3.6.3.2 Reliability Design Relating To Weight with Rounding Off

3.6.3.3 Reliability Design Relating To Volume with Rounding Off

3.7 Procedure for Problem Formulation for Function $r_j = \frac{\pi}{2} \tan^{-1}(c_j/h_j)$

3.7.1 Lagrangean Method

3.7.2 Case Problem

3.7.2.1 Constants

3.7.2.2 Cost Constraint Details (Without X_j Rounding Off)

3.7.2.3 Weight Constraint Details (Without X_j Rounding Off)

3.7.2.4 Volume Constraint Details (Without X_j Rounding Off)

3.7.3 Reliability Design with X_j Rounding Off

3.7.3.1 Reliability Design Relating To Cost with Rounding Off

3.7.3.2 Reliability Design Relating To Weight with Rounding Off

3.7.3.3 Reliability Design Relating To Volume with Rounding Off

3.8 Procedure for Problem Formulation For Function $c_j = \left[\frac{(d-f)}{\psi_j - \psi_{j,\text{old}}} / (\psi_{j,\text{max}} - \psi_j)\right]$
3.8.3.1 Reliability Design Relating To Cost with Rounding Off
3.8.3.2 Reliability Design Relating To Weight with Rounding Off
3.8.3.3 Reliability Design Relating to Volume with Rounding Off

3.9 Discussion

Chapter-4 Integrated Reliability Models for Redundant Systems With Multiple Constraints-Integer Programming

4.1 Introduction
4.2 Integer Programming
4.3 The Integrated Reliability Model Using Integer Programming for the Function
\[r_j = \left(\frac{c_j}{b_j} \right)^{1/\delta_j} \]

4.3.1 Integer Programming Solution
4.3.1.1 Reliability Design Relating To Cost
4.3.1.2 Reliability Design Relating To Weight
4.3.1.3 Reliability Design Relating To Volume

4.4 The Integrated Reliability Model Using Integer Programming for the Function
\[c_j = a_j \exp \left(\frac{b_j}{(1-r_j)} \right) \]

4.4.1 Integer Programming Solution
4.4.1.1 Reliability Design Relating To Cost
4.4.1.2 Reliability Design Relating To Weight
4.4.1.3 Reliability Design Relating To Volume

4.5 The Integrated Reliability Model Using Integer Programming for the Function
\[r_j = \frac{\pi}{2} \tan^{-1} \left(\frac{c_j}{b_j} \right)^{1/\delta_j} \]

4.5.1 Integer Programming Solution
4.5.1.1 Reliability Design Relating To Cost
4.5.1.2 Reliability Design Relating To Weight
4.5.1.3 Reliability Design Relating To Volume
4.5.1 Integer Programming Solution
4.5.1.1 Reliability Design Relating To Cost
4.5.1.2 Reliability Design Relating To Weight
4.5.1.3 Reliability Design Relating To Volume

4.6 The Integrated Reliability Model Using Integer Programming for the Function
\[c_j = e^{[-1.5e_{ij}(r_j - r_{j, \min})/(r_{j, \max} - r_j)]} \]

4.6.1 Integer Programming Solution
4.6.1.1 Reliability Design Relating To Cost
4.6.1.2 Reliability Design Relating To Weight
4.6.1.3 Reliability Design Relating To Volume

4.7 Discussion

Chapter-5 Integrated Reliability Models for Redundant Systems With Multiple Constraints-Heuristic Approach

5.1 Introduction
5.2 Heuristic Approach
5.3 Heuristic Algorithm
5.4 Flow chart

5.5 The Integrated Reliability Model Using Heuristic Approach for the Function
\[r_j = \left(\frac{c_j}{b_j} \right)^{1/3} \]

5.5.1 Heuristic Approach Solution
5.5.1.1 Reliability Design Relating To Cost
5.5.1.2 Reliability Design Relating To Weight
5.6 The Integrated Reliability Model Using Heuristic Approach for the Function

\[c_j = a_j \exp(b_j/(1-r_j)) \]

5.6.1 Heuristic Approach Solution

5.6.1.1 Reliability Design Relating To Cost

5.6.1.2 Reliability Design Relating To Weight

5.6.1.3 Reliability Design Relating To Volume

5.7 The Integrated Reliability Model Using Heuristic Approach For The Function

\[r_j = \frac{\pi}{2} \tan^{-1}(c_j/b_j) \]

5.7.1 Heuristic Approach Solution

5.7.1.1 Reliability Design Relating To Cost

5.7.1.2 Reliability Design Relating To Weight

5.7.1.3 Reliability Design Relating To Volume

5.8 The Integrated Reliability Model Using Heuristic Approach for The Function

\[c_j = e^{((1-f_j)(r_{j} - r_{j,\text{min}})/(r_{j,\text{max}} - r_{j}))} \]

5.8.1 Heuristic Approach Solution

5.8.1.1 Reliability Design Relating To Cost

5.8.1.2 Reliability Design Relating To Weight

5.8.1.3 Reliability Design Relating To Volume
5.8.2 Sensitivity Analysis

5.8.2.1 Sensitivity Analysis for the function \(r_j = \left(\frac{v_j}{h_j} \right)^{\frac{1}{2}} \) 113

5.8.2.2 Sensitivity Analysis for the function \(c_j = a_j \exp \left(h_j / (1 - r_j) \right) \) 114

5.8.2.3 Sensitivity Analysis for the function \(r_j = \frac{\pi}{2} \tan^{-1} \left(\frac{v_j}{h_j} \right)^{\frac{1}{2}} \) 115

5.8.2.4 Sensitivity Analysis for the function

\[c_j = e^{\left((1 - f_j)(r_j - r_{j,\text{min}})(r_{j,\text{max}} - r_j) \right)} \]

5.9 Discussion 117

5.10 Graphical analysis of results 121

Chapter – 6 Conclusions 122

6.1 Summary and conclusions 123

6.2 Scope for future work 126

References 127

Appendix 136