CONTENTS

INTRODUCTION 1
OBJECTIVES OF THE PRESENT STUDY 6
LITERATURE REVIEW 8
History of Diabetes 8
Epidemiology of Diabetes 9
Pancreas 10
Glucagon 11
Insulin 12
Diabetes and central nervous system 15
Brain neurotransmitter changes during diabetes 15
Role of neurotransmitters in insulin regulation & secretion 17
Acetylcholine 17
Dopamine 17
Gamma-Aminobutyric acid 18
Serotonin 19
Epinephrine and Norepinephrine 19
Glutamate 21
Glutamate Receptors 22
NMDA receptors 25
AMPA receptors 28
Glutamate receptors in pancreas 31
Glutamate transporters 32
Oxidative stress and diabetes 34
Glutamate mediated excitotoxic cell death 37
Diabetes and apoptosis 39
Inositol 1, 4, 5-trisphosphate (IP3) 41
Inositol 1, 4, 5-trisphosphate (IP3) and activation of calcium release 42
Curcumin 43
Curcumin and neurodegenerative diseases 45
Vitamin D₃ 46
Vitamin D receptor 47
Vitamin D and diabetes 48

MATERIALS AND METHODS 50
Chemicals used and their sources 50
Biochemicals 50
Radio chemicals 50
Molecular Biology Chemicals 50
Confocal Dyes 51
Animals 51
Diabetes induction 51
Determination of Blood Glucose 51
Determination of anti-diabetic potential of Curcumin and Vitamin D₃ 52
Sacrifice and tissue preparation 53
Estimation of blood glucose 53
Estimation of circulating Insulin by Radioimmunoassay 54
Principle of the assay 54
Assay protocol 54
Quantification of glutamate 55
Determination of SOD activity 55
Glutamate receptor binding studies using [³H] Radioligands in the brain regions of control and experimental rats 56
NMDA receptor binding studies 56
AMPA receptor binding studies 56
Protein determination 57
Analysis of the receptor binding data 57
Linear regression analysis for Scatchard plots 57
Gene expression studies in different brain regions and pancreas of control and experimental rats
Isolation of RNA
Real-Time Polymerase Chain Reaction
cDNA synthesis
Real-time PCR assays
IP3 content in the brain regions of control and experimental rats
Principle of the assay
Assay Protocol
NMDA R1, NMDA 2B and AMPA GluR2 GluR4 receptor subunit expression studies in the brain regions of control and experimental rats using confocal microscope
AMPA GluR4, GluR2, Vitamin D₃ and IP3 receptor expression studies in the pancreas of control and experimental rats using confocal microscope
Isolation of pancreatic islets
Calcium imaging studies using confocal microscope
Statistics

RESULTS
Body Weight
Blood Glucose Level
Circulating Insulin Level

CEREBRAL CORTEX
Glutamate content in the cerebral cortex of control and experimental rats
Scatchard analysis of NMDA receptor using [³H] MK-801 binding against MK-801 in the cerebral cortex of control and experimental rats
Scatchard analysis of AMPA receptor using [³H] AMPA binding against AMPA in the cerebral cortex of control and experimental rats
Real time PCR amplification of NMDA R1 receptor subunit mRNA from the cerebral cortex of control and experimental rats 68
Real time PCR amplification of NMDA 2B receptor subunit mRNA from the cerebral cortex of control and experimental rats 68
Real time PCR amplification of GluR4 subunit of AMPA receptor mRNA from the cerebral cortex of control and experimental rats 68
Real time PCR amplification of GluR2 subunit of AMPA receptor mRNA from the cerebral cortex of control and experimental rats 68
Real time PCR amplification of GLAST mRNA from cerebral cortex of control and experimental rats 69
Real time PCR amplification of GAD mRNA from the cerebral cortex of control and experimental rats 69
IP3 content in cerebral cortex of control and experimental rats 69
Superoxide dismutase assay in the cerebral cortex of control and experimental rats 70
Real time PCR amplification of GPx mRNA from the cerebral cortex of control and experimental rats 70
Real time PCR amplification of Akt-1 mRNA from the cerebral cortex of control and experimental rats 70
Real time PCR amplification of BAX mRNA from the cerebral cortex of control and experimental rats 71
Real time PCR amplification of caspase 8 mRNA from the cerebral cortex of control and experimental rats 71
NMDA R1 receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 71
NMDA 2B receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 71
AMPA (GluR4) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 72
AMPA (GluR2) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 72

HIPPOCAMPUS 73
Glutamate content in the hippocampus of control and experimental rats 73
Scatchard analysis of NMDA receptor using [3H] MK-801 binding against MK-801 in the hippocampus of control and experimental rats
Real time PCR amplification of NMDA R1 receptor subunit mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of NMDA 2B receptor subunit mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of GluR4 subunit of AMPA receptor mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of GluR2 subunit of AMPA receptor mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of GLAST mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of GAD mRNA from the hippocampus of control and experimental rats
IP3 content in hippocampus of control and experimental rats
Superoxide dismutase assay in the hippocampus of control and experimental rats
Real time PCR amplification of GPx mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of Akt-1 mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of BAX mRNA from the hippocampus of control and experimental rats
Real time PCR amplification of caspase 8 mRNA from the hippocampus of control and experimental rats
NMDA R1 receptor subunit antibody staining in control and experimental groups of rats using confocal microscope
NMDA 2B receptor subunit antibody staining in control and experimental groups of rats using confocal microscope
AMPA (GluR4) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope
AMPA (GluR2) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope
BRAIN STEM

Glutamate content in the brain stem of control and experimental rats 79

Scatchard analysis of NMDA receptor using [3H] MK-801 binding against MK-801 in the brain stem of control and experimental rats 79

Scatchard analysis of AMPA receptor using [3H] AMPA binding against AMPA in the brain stem of control and experimental rats 79

Real time PCR amplification of NMDA R1 receptor subunit mRNA from the brain stem of control and experimental rats 80

Real time PCR amplification of NMDA 2B receptor subunit mRNA from the brain stem of control and experimental rats 80

Real time PCR amplification of GluR4 subunit of AMPA receptor mRNA from the brain stem of control and experimental rats 80

Real time PCR amplification of GluR2 subunit of AMPA receptor mRNA from the brain stem of control and experimental rats 81

Real time PCR amplification of GLAST mRNA from brain stem of control and experimental rats 81

Real time PCR amplification of GAD mRNA from the brain stem of control and experimental rats 81

IP3 content in brain stem of control and experimental rats 81

Superoxide dismutase assay in the brain stem of control and experimental rats 82

Real time PCR amplification of GPx mRNA from the brain stem of control and experimental rats 82

Real time PCR amplification of Akt-1 mRNA from the brain stem of control and experimental rats 82

Real time PCR amplification of BAX mRNA from the brain stem of control and experimental rats 83

Real time PCR amplification of caspase 8 mRNA from the brain stem of control and experimental rats 83

NMDA R1 receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 83

NMDA 2B receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 84
AMPA (GluR4) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 84

CEREBELLUM 85

Glutamate content in the cerebellum of control and experimental rats 85

Scatchard analysis of NMDA receptor using $[^3]H$ MK-801 binding against MK-801 in the cerebellum of control and experimental rats 85

Scatchard analysis of AMPA receptor using $[^3]H$ AMPA binding against AMPA in the cerebellum of control and experimental rats 85

Real time PCR amplification of NMDA R1 receptor subunit mRNA from the cerebellum of control and experimental rats 86

Real time PCR amplification of NMDA 2B receptor subunit mRNA from the cerebellum of control and experimental rats 86

Real time PCR amplification of GluR4 subunit of AMPA receptor mRNA from the cerebellum of control and experimental rats 86

Real time PCR amplification of GluR2 subunit of AMPA receptor mRNA from the cerebellum of control and experimental rats 87

Real time PCR amplification of GLAST mRNA from cerebellum of control and experimental rats 87

Real time PCR amplification of GAD mRNA from the cerebellum of control and experimental rats 87

IP3 content in cerebellum of control and experimental rats 88

Superoxide dismutase assay in the cerebellum of control and experimental rats 88

Real time PCR amplification of GPx mRNA from the cerebellum of control and experimental rats 88

Real time PCR amplification of Akt-1 mRNA from the cerebellum of control and experimental rats 89

Real time PCR amplification of BAX mRNA from the cerebellum of control and experimental rats 89

Real time PCR amplification of caspase 8 mRNA from the cerebellum of control and experimental rats 89
NMDA R1 receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 90
NMDA 2B receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 90
AMPA (GluR4) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 90
AMPA (GluR2) receptor subunit antibody staining in control and experimental groups of rats using confocal microscope 90

PANCREAS

Glutamate content in the pancreas of control and experimental rats 91
Scatchard analysis of NMDA receptor using $[^1]H$ MK-801 binding against MK-801 in the pancreas of control and experimental rats 91
Scatchard analysis of AMPA receptor using $[^1]H$ AMPA binding against AMPA in the pancreas of control and experimental rats 91
Real time PCR amplification of GluR4 subunit of AMPA receptor mRNA from the pancreas of control and experimental rats 91
Real time PCR amplification of GluR2 subunit of AMPA receptor mRNA from the pancreas of control and experimental rats 92
Real time PCR amplification of GLAST mRNA from Pancreas of control and experimental rats 92
IP3 content in the pancreas of control and experimental rats 92
Superoxide dismutase assay in the Pancreas of control and experimental rats 93
Real time PCR amplification of GPx mRNA from the Pancreas of control and experimental rats 93
Real time PCR amplification of BAX mRNA from the Pancreas of control and experimental rats 93
Real time PCR amplification of caspase 8 mRNA from the Pancreas of control and experimental rats 93
Real time PCR analysis of Neuro D1 gene expression in Pancreas of control and experimental rats 94
Real time PCR analysis of Pdx1 gene expression in Pancreas of control and experimental rats 94
Co-labeling studies using Insulin and AMPA (GluR2) receptor subunit specific antibody in the pancreatic islets of control and experimental groups of rats using confocal microscope 94

Co-labeling studies using Insulin and AMPA (GluR4) receptor subunit specific antibody in the pancreatic islets of control and experimental groups of rats using confocal microscope 95

IP3 receptor expression in the pancreatic islets of control and experimental groups of rats using confocal microscope 95

Vitamin D3 receptor expression in the pancreatic islets of control and experimental groups of rats using confocal microscope 95

Calcium release from pancreatic islets using Fluo-4 96

DISCUSSION 97

Blood glucose, insulin level and body weight 97

Glutamatergic receptor alterations and functional regulation in control and experimental rats 99

Cerebral cortex 100

Hippocampus 104

Brain Stem 107

Cerebellum 110

Pancreas 114

SUMMARY 121

CONCLUSION 126

REFERENCES

LIST OF PUBLICATIONS, ABSTRACTS PRESENTED