CHAPTER 1. INTRODUCTION 1-10

1.1 G-quadruplex (G4 DNA) Motif 2

1.1.1 G-quadruplex DNA Conformation(s) 2
 a. ‘G-quartet’ Motif 2

1.1.2 G-quadruplex DNA Structural Polymorphism 3
 a. Strand Stoichiometry 3
 b. Strand Polarity 4
 c. Loop Connectivity 5
 d. Loop Size 7
 e. Role of Cations 7

1.1.3 Structure Determination of G-quadruplex Motif 8
 a. Nuclear Magnetic Resonance 8
 b. X-ray Crystallography 8
 c. Circular Dichroism 8

1.1.4 Kinetics of G-quadruplex formation/deformation 9

1.2 Biological Existence and Significance 9

1.2.1 Genomic Distribution 9

1.2.2 G-quadruplex Interacting Proteins 10

1.2.3 G-quadruplex Interacting Small Molecules 10
CHAPTER 2. G-QUADRUPLEX COUPLED (QC) KINETICS

2.1 Introduction

2.2 Materials and Methods
 2.2.1 Oligonucleotides Used in this Study
 2.2.2 CD Spectroscopy
 2.2.3 Poly-Acrylamide Gel Electrophoresis (PAGE)
 2.2.4 Hybridization Kinetics using Surface Plasmon Resonance

2.3 G-quadruplex Coupled (QC) Hybridization Model
 2.3.1 Pre equilibrium
 2.3.2 Association
 2.3.3 Dissociation

2.4 Results
 2.4.1 Hybridization Influenced by G-quadruplex Formation on Sensor Surface
 2.4.2 G-quadruplex Coupled (QC) Hybridization Results and Analysis
 2.4.3 G-quadruplex formation is Kinetically Favored at Low Concentration

2.5 Discussion

CHAPTER 3. G-QUADRUPLEX-COUPLED LIGAND (QCL) KINETICS

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Oligonucleotides Used in this Study
 3.2.2 Small Molecules Used in this Study
 3.2.3 Fluorescence Resonance Energy Transfer (FRET)
 3.2.4 CD Spectroscopy
 3.2.5 Hybridization Kinetics using Surface Plasmon Resonance
3.3 G-quadruplex-Coupled Ligand (QCL) Kinetics Model

3.3.1 Regeneration
3.3.2 Pre equilibrium
3.3.3 Association Phase
3.3.4 Dissociation Phase

3.4 Results

3.4.1 G-quadruplex-coupled model for ligand binding
3.4.2 TmPyP4 affinity for the human telomeric versus c-MYC G-quadruplex
3.4.3 QC hybridization of c-MYC and telomeric G-quadruplex motifs
3.4.4 TpPy-mediated stabilization of G-quadruplex is more effective
3.4.5 QC hybridization with G-quadruplex from c-MYC promoter and human, Oxytricha and Tetrahymena telomere
3.4.6 Hybridization versus ligand association of telomeric and c-MYC G-quadruplex motif
3.4.7 Analysis of ligand-binding versus hybridization competition
3.4.8 G-quadruplex-coupled ligand binding affects \(k_u \) but not \(k_f \)

3.5 Discussion

CHAPTER 4 GENOME-WIDE in-silico ANALYSIS

4.1 Introduction
4.2 In-silico Determination of G-quadruplex Motif forming Sequences
4.3 Results
 4.3.1 Genome-wide Human PG4 Motif Mapping and Analysis
 4.3.2 Statistical significance of the Mosaic Distribution of PG4 Motifs
4.4 Discussion
CHAPTER 5 NM23-H2 UNWINDS G-QUADRUPLEX MOTIF

5.1 Introduction 79

5.2 Materials and Methods 79
 5.2.1 Oligonucleotides and small molecules used in this study 79
 5.2.2 Details of Plasmid Construct 79
 5.2.3 Recombinant NM23-H2 expression 80
 5.2.4 Autophosphorylation assay 81
 5.2.4 Enzymatic activity of NM23-H2 (wildtype and mutants) 81
 5.2.5 PAGE experiments detected by Fluorescence Resonance Energy Transfer 82

5.3 Results 82
 5.3.1 NM23-H2 binds G-quadruplex motif in vitro 82
 5.3.2 NM23-H2 mutants also binds G-quadruplex motif 86
 5.3.3 Phosphorylated NM23-H2 lacks transactivation potential 87

5.3 Discussion 87

BIBLIOGRAPHY 89-101

APPENDIX 102
 List of Publications 103