INDEX

1. ABBREVIATION 1
2. ABSTRACT OF THE THESIS 3
3. INTRODUCTION AND REVIEW OF LITERATURE. 5
 3.1 Osteopontin (OPN) 5
 3.2 Nomenclature of OPN 5
 3.3 Location of OPN in Genome 7
 3.4 Structure and Functions of OPN 8
 3.5 OPN in Oncology
 3.5.1 Role of OPN in Breast Cancer Progression 10
 3.5.2 Prostate Cancer and OPN 11
 3.5.3 OPN Controls the Metastatic Potential of Melanoma Progression 12
 3.5.4 Role of OPN in Various Other Cancers 12
 3.6 Angiogenesis 13
 3.7 Vascular Endothelial Growth Factor (VEGF) 15
 3.7.1 VEGF receptors 16
 3.8 Neuropilin 1 (NRP-1) 17
 3.9 OPN Could be a Key Angiogenic Factor for Tumor Progression. 19
 3.10 Breast Tumor Kinase (Brk) 21
 3.11 Activating Transcription Factor 4 (ATF-4). 22
 3.12 Nuclear Factor kappa B (NF-κB) 22
 3.13 Short interfering RNA (siRNA) in Cancer Therapy 23
 3.14 Pristane (2, 6, 10, 14-tetramethylpentadecane) 24
 3.15 Stromal-Tumor Interaction in Cancer Progression 25
4. AIMS AND OBJECTIVE OF THE STUDY 27
5. MATERIALS AND METHODS 29
 5.1 Sources of Chemicals and cDNA 29
 5.2 Maintenance of Cell Lines 32
 5.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blot Analysis 33
 5.4 Immunoprecipitation 36
 5.5 RNA Extraction and Reverse Transcription (RT)-PCR 37
 5.6 Mammalian Cell Transfection 37
5.7 Reporter Gene Expression Analysis
5.8 In vitro Brk kinase Assay by Autophosphorylation
5.9 Gelatin Zymography
5.10 Preparation of Nuclear and Cytoplasmic Extracts
5.11 Electrophoretic Mobility Shift Assay (EMSA)
5.12 Wound Migration Assay
5.13 Cell Migration and Co-migration Assays in Modified Boyden Chamber
5.14 Immunofluorescence Study by Confocal Microscopy
5.15 In Vivo Matrigel Based Angiogenesis Assay
5.16 In Vivo Tumorigenecity Experiments
 5.16.1 Generation of orthotopic breast tumor in nude mice
 5.16.2 Generation of breast tumor in wild type and OPN knockout mice
 5.16.3 Generation of pristane-induced mammary tumorigenesis in mice
5.17 Preparation of Lysates from Tumor Tissue
5.18 Immunohistochemical Study of Tumor Tissue
5.19 Human Breast Cancer Clinical Specimens Analysis
5.20 Statistical Analysis

RESULTS AND DISCUSSION

6. Role of Osteopontin (OPN) in Regulation of Vascular Endothelial Growth Factor Dependent Breast Tumor Growth and Angiogenesis through Autocrine and Paracrine Mechanism

6.1 Introduction
6.2 Results
 6.2.1 Regulation of VEGF Expression by OPN at Transcriptional and Protein Levels
 6.2.2 OPN Induces c-Src/PI 3-kinase/NIK Dependent NF-κB-mediated VEGF Promoter Activity and Expression
 6.2.3 Brk Plays Crucial Role in OPN-induced NIK Dependent NF-κB Activation
 6.2.4 Crosstalk between NF-κB and ATF-4 in Response to OPN Controls VEGF Expression.
 6.2.5 OPN Promotes VEGF and its receptor Neuropilin-1 (NRP-1) Dependent Breast Tumor Cell Motility via Autocrine Loop.
 6.2.6 OPN-induced VEGF Regulates KDR Phosphorylation and KDR