TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>PARTICULARS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>1-22</td>
</tr>
</tbody>
</table>

CHAPTER I CHEMICAL INVESTIGATION OF MEDICINAL AND AROMATIC PLANTS FOR SCREENING OF BIOACTIVE MOLECULES 23-103

1.1. **General Introduction** 23
 1.1.1 Biosynthetic pathway 24
 1.1.1.1 Biosynthetic pathway of phenolic compounds 24
 1.1.1.2 Biosynthetic pathway of terpenes 27
 1.1.1.2.1 MVA biosynthetic pathway 27
 1.1.1.2.2 Non-MVA biosynthetic pathway 27
 1.1.1.2.3 Synthesis of terpenes from DMAPP and IPP 30

1.2. **Review of literature** 32
 1.2.1 *Potentilla fulgens* 32
 1.2.2 *Artemisia* species 32
 1.2.2.1 *Artemisia maritima* 33
 1.2.2.2 *Artemisia capillaris* 34
 1.2.3 *Heracleum thomsonii* 34

1.3. **Results and Discussion** 35
 1.3.1 *Potentilla fulgens* 35
 1.3.1.1 Structure elucidation of isolated compounds from *Potentilla fulgens* aerial parts 35
 1.3.1.2 Structure elucidation of isolated compounds from *Potentilla fulgens* roots 41
 1.3.1.3 Antioxidant activity of *Potentilla fulgens* aerial parts (fractions/isolated compounds) 42
1.3.1.4. Estimation of total polyphenolic content of *Potentilla fulgens* roots

1.3.1.5. Antioxidant activity of *Potentilla fulgens* root extract/fractions/isolated compounds

1.3.2. *Artemisia* species

1.3.2.1. *Artemisia maritima*

1.3.2.1.1. Essential oil composition

1.3.2.1.2. Antimicrobial activity

1.3.2.2. *Artemisia capillaries*

1.3.2.2.1. Essential oil composition

1.3.2.2.2. Antimicrobial activity

1.3.3. *Heracleum thomsonii*

1.3.3.1. Essential oil composition

1.3.3.2. Antimicrobial activity

1.4. **Experimental**

1.4.1. Materials and methods

1.4.2. *Potentilla fulgens*

1.4.2.1. Plant material

1.4.2.2. Extraction of *Potentilla fulgens* aerial parts

1.4.2.2.1. Acid hydrolysis of Potentene B (2)

1.4.2.2.2. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of aerial parts

1.4.2.3. Extraction of *Potentilla fulgens* roots

1.4.2.3.1. Acid hydrolysis of Potifulgene (6)

1.4.2.3.2. Determination of poly phenolic content in roots

1.4.2.3.3. DPPH radical scavenging activity of *P. fulgens* roots

1.4.2.3.4. Estimation of Trolox equivalent antioxidant activity

1.4.3. *Artemisia* species

1.4.3.1. *Artemisia maritima*

1.4.3.1.1. Plant Material
1.4.3.2. Artemisia capillaries

1.4.3.2.1. Plant Material

1.4.3.2.2. Essential oil isolation (Hydrodistillation)

1.4.4 Heracleum thomsonii

1.4.4.1. Plant Material

1.4.4.2. Essential oil isolation (Hydrodistillation)

1.4.5. Reagents

1.4.6. Gas-chromatography Mass spectrometry (A. maritima, A. capillaris and H. thomsonii)

1.4.7. Identification of constituents

1.4.8. Antimicrobial screening

Conclusions

References 71-82

Spectra (NMR, HRESI-QTOF-MS, GC-MS) 83-103

CHAPTER II SYNTHETIC MODIFICATIONS OF ORGANIC MOLECULES FOR DEVELOPING NEW REACTION SYSTEMS

2.1. General introduction 104

2.2. Review of literature 104

2.2.1. Multicomponent Michael reaction of arylmethyl ketones 104

2.2.2. Claisen-Schmidt condensation (Crossed Aldol condensation) of aromatic aldehydes in presence of alkali exchange anionic macroporous resin 109

2.3. Results and Discussion 112

2.3.1. Multicomponent Michael reaction of arylmethyl ketones 112

2.3.2. Claisen-Schmidt condensation (Crossed Aldol condensation) of aromatic aldehydes in presence of alkali exchange anionic macroporous resin 117
2.4. **Experimental**

2.4.1. **Materials and methods**

2.4.2. **Multicomponent Michael reaction of arylmethyl ketones**

2.4.2.1. Reaction of acetophenone and acrylonitrile with NaOEt

2.4.2.2. Reaction of acetophenone and acrylonitrile with KO'Bu

2.4.2.3. Reaction of acetophenone and acrylonitrile with KF-alumina

2.4.2.4. Corrected procedure for the Michael and Thorpe-Ziegler reaction

2.4.2.5. General procedure for Diethyl-4-benzoyl heptanedioate (14), 6-(ethoxycarbonyl)-4-benzoyl hexanoic acid (15) and 4-benzoyl heptanedioic acid (16)

2.4.2.6. Alternative procedure for the synthesis of 5-benzoyl-2-iminocyclohexane-carboxylic acid (17) and 5-benzoyl-5-(2-cyanoethyl)-2-iminocyclo-hexanecarbonitrile (3c)

2.4.2.7. Synthesis of 2-[2-(1H-tetrazol-5-yl) ethyl]-1-(4-methoxy phenyl)- 4-(1H-tetrazol-5-yl) butan-1-one (18) and 2-[2-(1H-tetrazol-5-yl) ethyl]-4-(1H-tetrazol-5-yl)-1-p-tolylbutan-1-one (19) from double Michael product

2.4.3. **Claisen-Schmidt condensation (Crossed Aldol condensation) of aromatic aldehydes in presence of alkali exchange anionic macroporous resin**

2.4.3.1. Preparation of catalyst

2.4.3.2. General experimental procedures

Conclusions

References

Spectra (NMR and HRESI-QTOF-MS)

CHAPTER III SYNTHETIC MODIFICATION OF STEVIOSIDE THROUGH ENZYMATIC BIOTRANSFORMATION

3.1. **Introduction**

3.1.1. Biosynthetic pathway of steviol glycosides
3.2. Review of literature 182
 3.2.1. Analytical and extraction methods for steviol glycosides 182
 3.2.2. Enzymatic biotransformation of stevioside 183

3.3. Results and discussion 188
 3.3.1. High performance thin layer chromatography (HPTLC) separation of major steviol glycosides 188
 3.3.2. Comparative studies on extraction methodologies of steviol glycosides 193
 3.3.3. Transglycosylation of stevioside 197
 3.3.3.1. Transglycosylation of stevioside by conventional method 197
 3.3.3.2. Transglycosylation of stevioside by ultrasound-assisted method 198
 3.3.3.3. Transglycosylation of stevioside by microwave-assisted reaction (MAR) method 198
 3.3.3.3.1. Effect of variable power irradiation 198
 3.3.3.3.2. Effect of substrate and enzyme concentration 199
 3.3.3.3.3. Effect of pH and temperature 200
 3.3.3.3.4. Effect of molar ratio of stevioside to β-CD on transglycosylation reaction 201
 3.3.3.4. Structure determination of biotransformed products 202

3.4. Experimental 204
 3.4.1. Materials and methods 204
 3.4.2. Isolation of major steviol glycosides 205
 3.4.2.1. Periodate oxidation of 1-3 (Steviol glycosides) 206
 3.4.3. High performance thin layer chromatography (HPTLC) separation of major stevioside glycosides 207
 3.4.3.1. Extraction and analysis of samples 207
 3.4.3.2. HPTLC procedure 208
 3.4.3.3. Calibration curve of three steviol glycosides 208
 3.4.3.4. Method validation 209
 3.4.4. Extraction methods 210
3.4.4.1. Conventional extraction method 210
3.4.4.2. Ultrasound assisted extraction method 211
3.4.4.3. Microwave assisted extraction method 211
3.4.4.4. Sample preparation for HPLC analysis 211
3.4.5. Transglycosylation of stevioside 211
3.4.5.1. Enzyme and chemicals 211
3.4.5.2. Transglycosylation reactions 212
3.4.5.2.1. Conventional Method 212
3.4.5.2.2. Ultrasound-assisted reaction method 212
3.4.5.2.3. Microwave-assisted reaction method 213

Conclusions 214

References 215-220

Spectra (NMR and HRESI-QTOF-MS) 221-235

Summary of the thesis 236-265

Publications 266-269