TABLE OF CONTENTS

Preface .. i-iv
Summary ... v-xxi

Chapter 1. Anthracene-9,10-dione based molecular receptors
Section 1.1 Introduction and background .. 4
1.1.1 Introduction .. 4
1.1.2 Lock and Key Principle .. 4
1.1.3 Preorganization ... 5
1.1.4 Chemosensor Development ... 6
1.1.5 Different approaches used for developing optical sensors 7
1.1.5.1 Indicator–Receptor approach (IR) .. 8
1.1.5.2 Displacement approach (DA) ... 13
1.1.5.3 Chemodosimeter approach .. 16
1.1.6 Chromogenic Vs. Fluorescent sensing ... 19
1.1.6.1 Photoinduced Electron transfer – PET ... 21
1.1.6.2 Charge transfer (CT) .. 23
1.1.6.2.1 Intramolecular charge transfer (ICT) 24
1.1.6.2.2 Twisted intramolecular charge transfer (TICT) 25
1.1.6.2.3 Metal to ligand charge transfer (MLCT) 26
1.1.6.3 Energy transfer (ET) .. 26
1.1.6.3.1 Electronic energy transfer (EET) .. 27
1.1.6.3.2 Forster Resonance energy transfer (FRET) 27
1.1.6.4 Excimer / Exciplex ... 30
1.1.7 References .. 33

Section 1.2 1-Aminoanthracene-9,10-dione based chromogenic molecular sensors: effect of nature and number of nitrogen atoms on metal ion sensing behavior 40
1.2.1 Introduction .. 40
1.2.2 Synthesis of chemosensors 2, 6, 8 and 10 ... 41
1.2.3 Effect of metal ions on absorption properties of chemosensors 2, 6, 8, and 10 ... 43
1.2.4 Effect of pH on the absorption spectra of 2, 6, 8, and 10 and their complexes with metal ions ... 45
1.2.5 Quantitative estimation of metal ions at pH 7 54
1.2.6 Ratiometric estimation of metal ions using chemosensors 2, 6, 8, 10

1.2.7 Experimental Part...

1.2.8 References...

Section 1.3 Anthracene-9,10-dione appended thioureas as chromogenic chemodosimeters for Hg$^{2+}$/Ag$^+$ ions – A journey around periphery of anthracene-9,10-dione for optimal selectivity and sensitivity towards Hg$^{2+}$

1.3.1 Introduction...

1.3.1.1 Desulfurization...

1.3.1.2 Desulfurization followed by cyclization to the heterocycle...

1.3.1.2.1 Formation of 1,3,4-oxadiazole ring...

1.3.1.2.2 Formation of imidazoline ring...

1.3.1.2.3 Formation of other rings...

1.3.2 Synthesis of chemodosimeters 85-90

1.3.3 Photophysical behaviour of chemodosimeters 85-90

1.3.4 Experimental Part...

1.3.5 References...

Section 1.4 Dansyl-anthracene dyads for ratiometric fluorescence recognition of Cu$^{2+}$

1.4.1 Introduction...

1.4.2 Synthesis of probes 1-5...

1.4.3 UV-Vis. absorption studies of compounds 1-5...

1.4.4 Fluorescence studies of probes 1-5...

1.4.5 Experimental Part...

1.4.6 References...

Chapter 2. Uracil based molecular receptors

Section 2.1 Overview of uracil based cyclic molecular architectures

2.1.1 Uracil based cyclic molecular architects with carbon atoms as bridges...

2.1.2 Uracil based cyclic molecular architects with metal ions as bridges...

2.1.3 References...

2.2.1 Introduction...