Index

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>I</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF AMINO ACIDS</td>
<td>VI</td>
</tr>
<tr>
<td>THE STANDARD GENETIC CODE</td>
<td>VII</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>VIII</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Transcriptional control of gene expression – an overview ... 1
 1.1.1 Regulation of transcription factor activity and function ... 1
 1.1.2 Combinatorial gene regulation: A symphony of transcription factors and their regulators ... 4
1.2 Apoptosis - a brief overview ... 5
 1.2.1 Demolition machinery of the cell – caspases ... 5
 1.2.2 Extrinsic and Intrinsic pathways of apoptosis ... 7
 1.2.3 Transcriptional control of the cell death machinery ... 10
1.3 Tumour suppressor p53 – Guardian of the Genome ... 12
 1.3.1 Domains of the p53 protein ... 12
 1.3.2 Functions of p53 ... 14
 1.3.3 General themes for modulating p53 activity ... 21
 1.3.4 Inactivation of p53 in human tumours ... 24
1.4 Caspase-1 - an inflammatory cum apoptotic protease ... 26
 1.4.1 Caspase-1 activation pathways ... 27
 1.4.2 Pro-apoptotic roles for caspase-1 ... 30
 1.4.3 Transcriptional regulation of caspase-1 ... 32
1.5 Background and objectives of the current study ... 33
CHAPTER 2 MATERIALS AND METHODS

2.1 Materials ... 36
 2.1.1 Sources of chemicals .. 36
 2.1.2 Antibodies used .. 37
 2.1.3 Bacterial strains .. 37
 2.1.4 Cell lines .. 37
 2.1.5 Plasmids .. 37
 2.1.6 Bacterial media, Antibiotics and Chemical Stocks 39

2.2 Methods .. 42
 2.2.1 Sterilization .. 42
 2.2.2 Plasmid isolation .. 42
 2.2.3 Isolation of genomic DNA 43
 2.2.4 RNA Isolation ... 43
 2.2.5 Quantitation of nucleic acids 43
 2.2.6 Agarose gel electrophoresis 43
 2.2.7 Restriction endonuclease digestion 43
 2.2.8 Gel elution of DNA fragments 44
 2.2.9 Ligation ... 44
 2.2.10 Preparation of ultracompetent cells 44
 2.2.11 Transformation of E. coli 44
 2.2.12 Selection of recombinant clones 45
 2.2.13 Southern blotting and hybridisation 45
 2.2.14 DNA sequencing .. 46
 2.2.15 Sequence analysis .. 46
 2.2.16 Oligonucleotide synthesis and purification 47
 2.2.17 Polymerase chain reaction (PCR) 48
 2.2.18 Reverse-transcription and polymerase chain reaction (RT-PCR) .. 48
 2.2.19 Purification of radiolabelled probe 49
 2.2.20 End-labelling and purification of end-labelled oligonucleotides ... 50
 2.2.21 Primer extension analysis 50
2.2.22 Construction of pCAT-promoter plasmids with putative p53 binding sites cloned as enhancer elements

2.2.23 Cloning of the Ipaf promoter in pCAT-Basic and deletion analysis

2.2.24 Construction of mutations in putative p53 binding sites by site directed mutagenesis

2.2.25 Construction of Activated Ipaf by site directed mutagenesis

2.2.26 Construction of vectors for expressing short hairpin RNA

2.2.27 Mammalian cell culture

2.2.28 Transfection of DNA in mammalian cells

2.2.29 Immunofluorescence

2.2.30 Apoptosis assay

2.2.31 Annexin V-fluos staining

2.2.32 β-Galactosidase assay

2.2.33 Chloramphenicol acetyl transferase (CAT) assay

2.2.34 Electrophoretic mobility shift assay (EMSA)

2.2.35 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

2.2.36 Western blotting

2.2.37 Statistical analysis

CHAPTER 3 REGULATION OF Ipaf GENE EXPRESSION BY p53 AND p73

3.1 Introduction

3.1.1 The transcriptional program of p53

3.1.2 p73-Roles in development and tumour suppression

3.1.3 Caspase-1 is a transcriptional target of p53 and p73

3.2 Results

3.2.1 Induction of Ipaf mRNA by overexpression of p53

3.2.2 Regulation of Ipaf gene expression by endogenous p53 and DNA damage

3.2.3 Ipaf mRNA is induced early in response to DNA damage signals

3.2.4 Identification of the transcription start site of Ipaf
3.2.5 Analysis of the Ipaf promoter
3.2.6 Identification of the p53-responsive element in the Ipaf promoter
3.2.7 Binding of recombinant p53 to the p53-responsive element in the Ipaf promoter
3.2.8 Identifying other regulatory elements in the Ipaf promoter
3.2.9 Ipaf promoter is p73-inducible
3.2.10 Identifying p73-responsive element(s) in the Ipaf promoter

3.3 Discussion
3.3.1 Induction of Ipaf gene expression by DNA damage-Involvement of p53
3.3.2 Regulation of Ipaf gene transcription by p53
3.3.3 Regulation of Ipaf gene transcription by p73 - Evidence for the existence of downstream promoter elements?

3.4 Appendix to Chapter 3

CHAPTER 4 ROLE OF Ipaf IN p53 AND DOXORUBICIN INDUCED APOPTOSIS

4.1 Introduction
4.1.1 ICE Protease Activating Factor (Ipaf)/CLAN/CARD12
4.1.2 Use of dominant negative mutants to understand gene function
4.1.3 RNA interference (RNAi)

4.2 Results
4.2.1 Construction of a dominant-negative mutant of Ipaf
4.2.2 Effect of Mutant Ipaf on p53 and doxorubicin-mediated apoptosis
4.2.3 Using RNA interference to knockdown Ipaf RNA and protein levels
4.2.4 Effect of the Ipaf-directed shRNA on p53 and doxorubicin induced apoptosis
4.2.5 Construction of constitutively active Ipaf (deleted of LRR) that can induce apoptosis
4.3 Discussion

4.2.1 Ipaf is a mediator of p53-induced and doxorubicin-induced apoptosis

4.2.2 Induction of caspase-1 activators by stress stimuli - Role for caspase-1 in stress-induced apoptosis

4.2.3 How does Ipaf mediate p53 or doxorubicin-induced apoptosis?

4.2.4 Possible recruitment of caspase-1 independent apoptotic pathways by Ipaf

SUMMARY OF RESULTS

PUBLICATION

REFERENCES