LIST OF FIGURES:

Fig 2.1: Interaction model representing the association of multiple factors in the development and progression of liver disease.

Figure 2.2: Worldwide prevalence of HBV, 2006.

Figure 2.3: Genetic organization of Hepatitis A virus positive-sense RNA

Figure 2.4: HAV related disease profile showing different phases of presence of virus and subsequent immune response.

Figure 2.5: Clinical spectrum of hepatitis B virus serology and immune response.

Figure 2.6: Worldwide prevalence of HBV.

Figure 2.7: Worldwide distribution patterns of HBV genotypes and sub-genotypes. Regions with high, intermediate and low endemicity are shown by grey, light grey and white shades respectively.

Figure 2.8: Hepatitis C prevalence rate globally, indicating high number of cases being reported from far east and south east Asia.

Figure 2.9: Genetic organization of HCV genome

Figure 2.10: Global distribution of HCV genotype showing the predominant prevalence of genotype 1 and 3 compared to other genotypes (Fang et al., 1997)

Figure 2.11a: Course of development of HCV related liver disease

Figure 2.11b: Disease pathogenesis in Hepatitis C virus related liver disease.

Figure 2.12: HEV endemic areas and global sero-prevalence determined by independent studies. Red areas on the map indicate regions of the world that are endemic for hepatitis E and where >25% of acute viral hepatitis is due to HEV.

Figure 2.13: Genome organization of Hepatitis E virus

Figure 2.14: Prevalence of HEV human and swine genotypes in certain global pockets including India

Figure 15. Clinical and serological course of HEV infection

Figure 2.16: Graphical representation of the association of alcohol consumption and liver disease risk, and (B) Venn diagram showing associative role of multiple risk factors with alcohol with respect to severity of alcohol associated liver disease severity

Figure 2.17: A schematic overview of BER pathway as adapted by Matsumotatto (2001).

Figure 2.18: Human XRCC1 protein and gene structure. (a) The diagram shows XRCC1 domains and the regions of interaction with other components of BER. (b) The diagram shows the structure of the gene with the most common and studied single nucleotide polymorphisms (SNPs): −77 T → C, R194W, R280H and R399Q.
Fig 5.1: Chemical reaction involved in measurement of nitrite with Griess reagent.

Figure 6.1: Representative agarose gel electrophoresis showing post multiplex PCR based analysis for HBV genotyping. A 147bp product in Lane 1,4,5,9,10,11,16,18 and 20 corresponds to HBV genotype D, a 701bp product in lane 6,12,13 corresponds to HBV genotype C, two bands at 307bp and 147bp in lane 15 corresponds to mixed HBV genotype A+D, no amplification marked by * in lane 2,3 and 19 shows failure in HBV genotyping by multiplex PCR; while lane 17 served as the negative control.

Figure 6.2: Representative agarose gel electrophoresis results showing second round PCR amplified product for the surface region of HBV in the earlier genotyped cases.

Figure 6.3: Representative electrophorogram showing the direct sequencing results of the surface region of a HBV isolate isolated from a chronic HBV infected case.

Figure 6.4: Phylogenetic analysis using the Expasy software tool for randomly sequenced HBV cases representing HBV genotype D (ASSMHBV1) and A (ASSMHBV2) by multiplex PCR genotyping, therefore confirming and validating our genotyping results.

Figure 6.5: Electrophorogram generated by direct sequencing of a HBV isolate using the primers of the surface region. The sequence data thus generated was used for phylogenetic analysis.

Figure 6.6: Sequence alignment and phylogenetic tree analysis of HBV isolates using the MEGA4.0 software, which previously couldn’t be genotyped by multiplex-PCR method.

Figure 6.7: Prevalence of HBV genotypes in our HBV infected enrolled cases, showing high prevalence of HBV genotype D. Importantly, presence of HBV genotype C which is associated with greater risk of severity of liver disease was also found in high percentage of cases, along with genotype A and mixed genotype A+D and one case interestingly showing similarity with HBV genotype G.

Figure 6.8a: Distribution of HBV genotypes in different subgroups of HBV infected cases showing the predominance of HBV genotype D in acute and chronic HBV infected cases.

Figure 6.8b: Graphical representation of the comparatives of HBV genotype distribution amongst different grades of severity of liver disease showing the association of HBV genotype A and C with severity of liver disease in our studied cohort.

Figure 6.10: Representative agarose gel showing post PCR amplification of 154 bp after second round of semi-nested PCR of VP3-VP1 region of HAV.

Figure 6.11: Representative electrophorogram of the VP3-VP1 region of a HAV isolate isolated from a FHF patient.

Figure 6.12: Multiple sequence alignment of representative HAV isolates compared to sequences available from different global pockets at the amino acid levels showing the differences at amino acid level in isolates from NE India which resembles more with the Indian and Korean IIIA genotype.
Figure 6.13: Phylogenetic tree of the compared standard global isolates and our representative isolates on the basis of nucleotide differences in the sequenced VP3-VP1 region showing that our representative NE Indian isolates belong to HAV genotype IIIA and has close similarity with genotype IIIA earlier reported from India as well as some similarity with the Korean and Mozambique IIIA strain.

Figure 6.14: Representative agarose gel showing post PCR amplification of 234bp after second round of semi-nested PCR of the VP1/2A region.

Figure 6.16: Sequence alignment and phylogenetic analysis of HAV isolates isolated from patients from Assam showing the presence of genotype IIIA and IA only.

Figure 6.17: Graphical representation of the percentage distribution of genotypes in the genotyped HAV cases showing the predominance of HAV genotype IIIA in both AVH and FHF cases (p=0.046) but the difference in distribution of genotypes in AVH and FHF cases was statistically non-significant (p=0.550).

Figure 6.18: Agarose gel electrophoresis results showing positive amplification for HCV RNA using primers specific for the 5’UTR region of HCV genome.

Figure 6.19. Representative electrophorogram of the NS5B region an HCV isolate isolated from a NE Indian patient studied in our cohort.

Figure 6.20. Phylogenetnic analysis using the Expasy software tool for HCV genotype base on direct sequencing of 5’UTR for isolate from Assam

Figure 6.21: Representative agarose gel electrophoresis results showing PCR amplification for HEV ORF1 region corresponding to 343bp.

Figure 6.22: Representative electrophorogram of the ORF1 region of a HEV isolate from an AVH patient.

Figure 6.23: Comparative multiple sequence alignment and phylogenetic tree based analysis showing the presence of HEV genotype1 in all the AVH and FHF genotyped cases from Assam. The alignment and phylogenetic analysis was performed by using the MEGA4.0 software analysis.

Figure 6.24: Representative agarose gel electrophoresis results showing PCR amplified products of 200 bp for hoGG1.

Figure 6.25: Representative agarose gel electrophoresis results for PCR-RFLP analysis for allele 326 of hoGG1 showing presence of wildtype Ser326 allele by virtue of a single band at 200bp and a mutant Ser326Cys heterozygote allele by virtue of presence of two bands at 200 and 100bp which is indicated by * sign.

Figure 6.26: Distribution of hoGG1 polymorphism in cirrhosis cases with different underlying etiologies showing the predominance of mutant hoGG1 genotype in cirrhosis cases of all etiologies

Figure 6.27: (A) Representative agarose gel electrophoresis results PCR amplification of 149bp for XRCC1/codon399. (B) Representative PCR-RFLP result of XRCC1 codon399 polymorphism analysis showing presence of two bands at 115+34bp for
Arg/Arg (AA) wildtype allele, three bands at 149+115+34bp for heterozygous Arg/Gln allele (AG) and a single band at 149bp for the homozygous mutant Gln/Gln allele (GG). Nd represents the non-digested PCR amplified product of 149 bp for XRCC1.

Figure 6.28: Distribution of XRCC1/codon399 polymorphism in cirrhosis cases, showing predominance of mutant XRCC1/codon399 genotype in cirrhosis cases with different underlying etiology.

Figure 6.29: Differences in CT and endoscopy details between normal healthy control and different grades of severity of liver cirrhosis patients showing the presence of esophageal varices.

Figure 6.30: Representative panel of immunohistochemistry analysis showing differential protein expression analysis of XRCC1 in cirrhosis cases. It may be noted that the XRCC1 expression is down-regulated in cases harboring the codon399 mutation.

Figure 6.33: Box-plot analysis showing significantly higher plasma nitrite levels in liver disease cases (p=0.011) compared to controls.

Figure 6.34: Box-plot analysis showing changes in plasma nitrite levels in acute viral hepatitis cases compared to controls. Group 1=control, 2=HAV, 3=HBV, 4=HCV, 5=HEV). The change in nitrite levels was significantly higher in HEV related liver disease cases.

Figure 5.35: Box-plot analysis showing difference in plasma nitrite levels in different groups of HBV related liver disease cases (group2=AVH, group3=CHBV and group4=cirrhosis) compared to controls (group1=controls). Significant increase in plasma nitrite levels were found in chronic HBV cases compared to controls (p=0.002) and AVH cases (p=0.042).

Figure 6.36: Box-plot analysis showing difference in plasma nitrite levels in different groups of alcohol related liver disease cases (group2=ALD, group3=Cirrhosis) compared to controls (group1= controls).

Figure 6.37: Panel representing GC-MS based analysis report for raw fish and fermented fish showing (A) GC analysis of raw fish showing GC based peaks indicating presence of N-nitrosamines. (B and C) MS based analysis of peaks 17.22 and 18.92 confirming presence of N-diethylnitrosamine and N-dimethylnitrosamine. (D) GC and MS based analysis of fermented fish showing absence of N-nitrosamines.

Figure 6.38: Graphical representation of 8-OH-dG levels in the different groups of liver disease cases of different aetiologies and controls, distinctly showing the elevated levels of 8-OH-dG especially in HAV and alcohol related liver disease.