LIST OF TABLES

Table 3.1 : Name of the primers with sequences used in this study

Table 3.2 : Segregation type codes for population type CP and genotype codes for a CP population, depending on the locus segregation type

Table 3.3 : Genes selected for the real time quantification studies and primer sequences for gene specific amplification

Table 4.1.1 : Parental difference of caffeine and flavanols in the three populations at 99% confidence level

Table 4.1.2 : Estimates of variance (eigenvalues) and accumulated variances of parental characters

Table 4.1.3 : Available putative triploid populations of tea and their parental combinations

Table 4.2.1 : Possible genomic combination of triploid parent (29/2) of the allo-tetraploid 398/2. A and B of triploid 29/2 denotes separate genome. The Diploid gamete “A” shows allele size similarity with “Genome A” of 29/2. The diploid gamete “a” shows allele size similarity with “Genome B” of 29/2.

Table 4.2.2 : Segregation pattern of the loci heterozygous in the diploid parent

Table 4.2.3 : Segregation pattern of the loci homozygous in the diploid parent

Table 4.2.4 : Segregation pattern of locus heterozygous in both the parent: Two Alleles are segregating

Table 4.2.5 : Segregation pattern of locus heterozygous in both the parents: Three alleles are segregating

Table 4.2.6 : Pearson’s correlation table showing the relationship between the GD (Jaccard’s) between parents and progenies and the biochemical content of the progenies.

Table 4.2.7 : The coefficient of correlation and corresponding probability values (–10 LogP) of each of the amplicons in Stock 615.

Table 4.2.8 : The coefficient of correlation and corresponding probability values (–10 LogP) of each of the amplicons in Stock 616

Table 4.4.1 : Some of the important sequences selected for RT-PCR analysis