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6.1  Introduction 
 

In this final chapter, we study the oscillatory behavior of third order neutral differ- 

ence equation  of the form 
 

. 
 

∆ rn∆
2
 

. 
b 

.. 

xn + 
. 

pn,sxn+s   τ 

s=a 

d 

+ 
. 

q 
s=c 

 
 
n,s 

 
f (x 

 
 

n+s−σ 

 

) = 0, n ∈ N0 

 
(6.1.1) 

 

subject to the following conditions: 
 

 

(C1) {rn} is a positive real sequence with 
.∞  1  = ∞; n=n0  rn 

 

(C2) {qn,s} and {pn,s} are nonnegative real sequences with 0 ≤ pn  ≡ 
.b

 

 

 

pn,s  ≤ 
 

P < 1; 
 
 

(C3) f : R → R is a continuous function such that f (u)  ≥ L > 0 for u = 0; 

(C4) a, b,  c, d ∈ N0 with a ≤ b and c ≤ d. 

By a solution of equation (6.1.1), we mean a nontrivial real sequence {xn} sat- 

isfying equation (6.1.1) for all n ∈ N0.  We  consider only those solution {xn} of 

equation (6.1.1) which satisfy sup{|xn | : n ≥ N } > 0 for all N ∈ N0. We assume 

that such solutions exist for the equation (6.1.1). 
 

In recent years there is a great interest in studying the oscillatory behavior of 

third order difference equations, see for example [3, 5, 6, 9, 15, 21, 22, 24, 45, 48, 54, 

56, 57, 58, 59, 61, 63, 75, 79, 82, 83, 85], and the references cited therein. Following 

this trend, in this chapter we obtain some sufficient conditions for the oscillation of 

all solutions of equation (6.1.1). 
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In Section 6.2, we present  some preliminary lemmas,  and in Section 6.3, we 

establish some sufficient conditions  which ensure that all solutions of equation (6.1.1) 

are either oscillatory or converging to zero. Some examples are given to illustrate 

the main results in Section 6.4. 

 

6.2  Preliminary  Lemmas 
 

 
In this section, we present some lemmas which will be useful in proving our main 

 

results. We write 
 

 
b 

zn = xn + 
. 

pn,sxn+s 

s=a 

 

 
 

τ . (6.2.1) 

 

Lemma  6.2.1.  Let {xn} be  a positive solution of equation  (6.1.1). Then {zn} 
 

satisfies only the following two cases eventually 
 
 

(I ) zn > 0, ∆zn  > 0, ∆2zn  > 0; 
 
 

(I I ) zn > 0, ∆zn  < 0, ∆2zn  > 0. 
 

Proof.  The proof is similar to that  of Lemma 5.2.1 and hence the details are 

omitted. 
 
 

Lemma 6.2.2. Let {xn} be a positive solution of equation (6.1.1), and let the cor- 
 

responding function {zn} satisfies Case (I I ) of Lemma 6.2.1. If 

∞  ∞  
. 

1  
∞  d 

. 
. . . . 

qt,j 

rs 
= ∞,  (6.2.2) 

n=n0 s=n 

 

then limn→∞ xn  = limn→∞ zn = 0. 

t=s j=c 

 

 

Proof.  The proof is similar to that  of Lemma 5.2.2 and hence the details are 

omitted. 
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n−σ 

 
 

Lemma 6.2.3. Assume that yn > 0, ∆yn  ≥ 0, ∆2yn ≤ 0 for all n ≥ n0. Then for 
 

each α ∈ (0, 1) there exists a N ∈ N0 such that 
 

yn−σ
 yn+1

 

n − σ 
≥ α 

n + 1  
for all  n ≥ N.  (6.2.3)

 
 

Proof. From the monotonicity of {∆yn}, we have 
 

n . 
yn+1  − yn−σ  = 

 
 

or 

 
s=n−σ 

∆ys ≤ (σ + 1)∆yn−σ 

 
 
 

 
Also, 

yn+1 

yn−σ  

≤
 

(σ + 1)∆y 
1 + . (6.2.4) 

yn−σ 

 

yn−σ  ≥ yn−σ − yn0  
≥ (n − σ − n0)∆yn−σ . 

 

So, for each α ∈ (0, 1), there is a N ∈ N0 such that 
 

yn−σ 

∆yn−σ  

≥
 

 

α(n − σ),  n ≥ N.  (6.2.5) 

 

Combining (6.2.4) and (6.2.5), we obtain 
 

yn+1 

yn−σ  

≤
 

 

or 

(σ + 1) 
1 + ≤ 

α(n − σ) 

αn − ασ + σ + 1 

α(n − σ) 

yn+1 (n + 1) 
.  

 
 

This completes the proof. 

yn−σ  

≤ 
α(n − σ) 

 

 

Lemma 6.2.4. Assume that zn > 0, ∆zn  > 0, ∆2zn  > 0, ∆3zn  ≤ 0 for all n ≥ N . 
 

Then 

zn 

∆zn  

≥
 

n − N 

2 

 

for all n ≥ N.  (6.2.6) 

 

Proof. From the monotonicity of {∆2zn}, we have 
 

n−1 

∆zn  = ∆zN  + 
. 

∆2zs ≥ (n − N )∆2zn. 
s=N 
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2 

. 

n 

− 

 

 

Summing from N to n − 1, we obtain 

n−1 

zn  ≥  zN + 
.

(s − N )∆2zs 

s=N 

= zN + (n − N )∆zn − zn+1  + zN . 

 

Hence zn ≥ (n−N ) ∆zn,   n ≥ N . This completes the proof. 
 

 

6.3  Oscillation Theorems 
 

 
In this section, we obtain some new oscillation criteria for the equation (6.1.1) by 

using the generalized Riccati transformation and Philos type technique. 

 

Theorem  6.3.1.  Assume that condition (6.2.2) holds.  If  there exists a positive 
 

nondecreasing real sequence {ρn} such that 
 

 

lim 
n−1 . 

 
Qs − (∆ρs)

2rs 

.
 
 
= ∞  (6.3.1) 

 

 
where 

n→∞ 
s=N 

4ρs+1 

 
 
 
 

and 

 

Qn = ρnq∗ 

 
 
 
 

q∗
 

α(n − σ)(n + c − σ − N ) 

2(n + 1) 
 

 
d . 

 
, (6.3.2) 

n  = L(1 − P ) 
 

 
s=c 

qn,s, (6.3.3) 

then every solution of equation (6.1.1) is either oscillatory or converging to zero. 
 

 

Proof. Assume that {xn} is a nonoscillatory solution of equation (6.1.1). Without 

loss of generality we may assume that xn  > 0, xn+s−τ > 0 for n ≥ n1  ≥ n0  ∈ N0. 

Then {zn} satisfies two cases as mentioned in Lemma 6.2.1. 

Case(I).  Let {zn} satisfies Case (I) of Lemma 6.2.1. From (6.2.1), we have 
 

b 

xn  ≥  zn − 
. 

pn,szn+s   τ 

s=a 

b . 
≥ 1 − 

. 
 

 
s=a 

pn,s 

.
zn 

≥  (1 − P )zn.  (6.3.4) 
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n 

n 

n 

w 
n ρ 

w 
n 

n+1 

n+1 

− 

− 

r 

 

 

Using condition (C3) in equation (6.1.1), we have 
 

d 

∆(rn∆
2zn) ≤ − 

. 
qn,sLxn+s 

s=c 

 

σ . (6.3.5) 

 

Now using (6.3.4) in (6.3.5), we obtain 
 

d 

∆(rn∆
2zn)   ≤  −L(1 − P ) 

. 
qn,szn+s   σ 

s=c 

≤  −q∗ zn+c−σ . (6.3.6) 
 
 

Define 
 

 
 

wn = ρn 

 

 

rn∆
2zn 

∆zn 

 

 

,  n ≥ n1. (6.3.7) 

 

Then wn > 0 for all n ≥ n1 and from (6.3.6), we have 
 
 

∆wn  ≤  −ρn 
q∗ zn+c−σ 

∆zn+1 

+ 
∆ρn 

ρn+1 

 

wn+1  − wn+1 
 

2
 

∆2zn 

∆zn 

≤  −ρn 

q∗ zn+c−σ 

∆zn+1 
+ 
∆ρn 

ρn+1 
wn+1  − 

wn+1 

ρn+1rn 

 

. (6.3.8) 

 
By Lemma 6.2.3 with yn = ∆zn, we have 

 
1 

∆zn+1  

≥
 

α(n − σ) 

n + 1 

1 

∆zn−σ 

 

for all  n ≥ N.  (6.3.9) 

 

Using (6.3.9) in (6.3.8), we obtain 
 

α(n − σ) zn+c−σ
 ∆ρn

 2 
n+1

 
∆wn ≤ −ρnq∗

 
 

n + 1 
 

∆zn−σ 

+ 
ρn+1 

wn+1  − . 
n+1   n 

 

Now applying Lemma 6.2.4 in the last inequality, we obtain 
 

α(n − σ) (n + c − σ − N ) ∆ρn
 2 

n+1
 

∆wn  ≤  −ρnq∗ 
 

n + 1 
+ 

2 ρn+1 

wn+1  − 
ρ 

 

n+1rn 

≤  −Qn + Anwn+1 − Bnw2
 

 
 

or 
 

Qn ≤ −∆wn + Anwn+1 − Bnw2
 

 

 
 

(6.3.10) 
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n − n
 

. 

ρ 
∆ H  + 

. 

n,s 

0 

 

 

where  

 

A  = 
∆ρn 

n  
ρ

 

 

 

1 
, Bn  = 

ρ r 
. 

n+1 n+1   n 
 

Now, using completing the square on the right hand side of (6.3.10), we have 
 

 A
2 

Q 
4Bn 

 

≤ −∆wn. 

 
Summing the last inequality from N to n − 1, we have 

 

n−1 . 
 

 
s=N 

 

Qs − 
(∆ρs)

2rs 

.
 

4ρs+1 

 

≤ wN 

 

− wn 

 

≤ wN . 

 

Letting n → ∞, we obtain a contradiction to (6.3.1). 
 

Case(II). If {zn} satisfies Case (I I ) of Lemma 6.2.1, then by condition (6.2.2) we 

have limn→∞ xn  = 0. This completes the proof. 

Before moving to next theorem, we define functions h, H : N0 × N0 → R such that 
 

 

(i) Hn,n  = 0 for n ≥ n0 ≥ 0; 

(ii) Hn,s  > 0 for n > s ≥ n0; 

(iii) ∆2Hn,s = Hn,s+1 − Hn,s  ≤ 0 for n > s ≥ n0  and there exists a positive real 
 

sequence {ρn} such that 

 
∆ρs 

2 n,s 
s+1 

Hn,s  = −hn,s

,
Hn,s 

 
for n > s ≥ n0. 

 
 

Theorem 6.3.2. Assume that (6.2.2) holds. If there exists a positive real sequence 
 

{ρn} such that 
 
 

1 
lim sup 

n−1 .  

Hn,sQs  − 1 
. 

ρs+1rsh
2 

 

= ∞,  (6.3.11) 
n→∞ Hn,n0  s=n 

4 
 

then every solution of equation (6.1.1) is either oscillatory or converging to zero. 
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s+1 

Bsw 

. 

Bsw 

. 

n,s 

. 

n,s 

. 

1 

2 

4 

 

 

Proof. Assume that {xn} is a nonoscillatory solution of equation (6.1.1). Proceed- 
 

ing as in the proof of Case (I) of Theorem 6.3.1, we have (6.3.10). Now multiplying 

the inequality (6.3.10) by Hn,s,  and summing the resulting  inequality from n2  to 

n − 1 for all n ≥ n2 ≥ n0, we have 
 

n−1 n−1 n−1 . 
Hn,sQs  ≤ − 

. 
∆wsHn,s + 

. .
Asws+1 − Bsw

2
 

. 
Hn,s. 

s=n2 s=n2 s=n2 

 

Using summation by parts on the first term of right hand side, we obtain 
 

n−1 . 
Hn,sQs  ≤  Hn,n 

s=n2 

 

2 
wn2  

+ 

n−1 . 
 

 
s=n2 

 
ws+1 

 
∆2H 

 

 
n,s 

n−1 

+ 
.

 

s=n2 

 
Asw 

 

 
s+1 

 
Hn,s 

n−1 . 
− 

s=n2 

 
2 
s+1 

 
Hn,s 

 

≤  Hn,n2 
wn2  

+ 

n−1 . 
 

∆ρs 
∆2Hn,s + 

ρ
 

. 

Hn,s 

 
ws+1 

s=n2  
n−1 . 

− 
s=n2 

s+1 
 

 
2 
s+1 

 

 
 

Hn,s.  (6.3.12) 

 

Using completing the square in the last inequality, we obtain 
 

n−1 . 
 

 
s=n2 

 

or 

 

Hn,sQs  − 
1 

. 
ρs+1rsh

2
 

4 

 

≤ Hn,n 

 

2 
wn2 

n−1 .  

Hn,sQs  − 1 
.
 

ρs+1rsh
2 

 

≤ wn2 
. 

Hn,n2  s=n 
4 

Taking limit supremum,  we obtain a contradiction to (6.3.11). 

If {zn} satisfies  Case (I I ) of Lemma 6.2.1, then by condition (6.2.2) we have 

limn→∞ xn  = 0. This completes the proof. 
 

 

Corollary  6.3.1. If Hn,s  = (n − s)β  for all n ≥ s ≥ 0 and 
 

 
lim sup 

n→∞ 

1 

(n − n0)
β 

n−1 . 
 

 
s=n0 

 

(n − s)β Qs − 
1 

. 
β2ρs+1rs(n − s)β−2

 

 

= ∞,  (6.3.13) 

 

for every β ≥ 1, then every solution of equation (6.1.1) is oscillatory. 
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s+1 

n−1 

n,s 

ψ 

n,s 

. 
h 

β 

β 

n 

0 

. 

2 

 

 

Corollary  6.3.2. If Hn,s  = 
. 

log  n+1 
.

 
 

for all n ≥ s ≥ 0 and 
 

lim sup(log(n + 1))−β  
. . .

log 
n + 1 

. 

Q 
n→∞  

s=n0 
s + 1 

β2 

− 
4(s + 1)2 

ρs+1rs
 

. 
n + 1 

.β−2 . 
log 

s + 1 

 

= ∞,  (6.3.14) 

 

for every β ≥ 1, then every solution of equation (6.1.1) is oscillatory. 
 

 

The proofs of Corollaries 6.3.1 and 6.3.2 follow from Theorem 6.3.2 and hence the 

details are omitted. 

 

Theorem 6.3.3. Assume that all conditions of Theorem 6.3.2 are satisfied except 
 

condition (6.3.11). Also let 
 
 

0 <  inf 
s≥n0 

 
 

. 

lim inf 
n→∞ 

 
 

Hn,s  

.
 

Hn,n0 

 
 

 

≤ ∞  (6.3.15) 

 

and  

 
1 

lim sup 

 
n−1 . 

ρs+1rsh
2 

 

 
< ∞  (6.3.16) 

n→∞ Hn,n0  s=n 

hold. If there exists a positive  sequence {ψn} such that 
 

n−1 2 

lim sup 
. 

n 

 

 

= ∞  (6.3.17) 
 

 
 

and 

n→∞ 

 
 

1 
n−1 . 

 

s=n0 
ρs+1rs 

 
 

1 
. 

lim sup 
n→∞ 

 
Hn,N 

. 
 

 
s=N 

Hn,sQs  − ρs+1rsh
2 

4 
≥ ψN , (6.3.18) 

then every solution of equation (6.1.1) is either oscillatory or converging to zero. 
 

Proof.   Proceeding   as in the proof of Theorem 6.3.2, we obtain (6.3.12). Using 

completing the square in (6.3.12) and rearranging terms, we obtain 
 
 

1 
lim sup 

n−1 . 
 

Hn,sQs  − 
2 
n,s 

 

≤  wn2
 

1 
− lim inf  × 

n→∞ Hn,n2  s=n 
4Bs n→∞ Hn,n2 

n−1  .    
h 

.2 . 
 

 
s=n2 

,
Hn,sBsws+1 + 

n,s 

2
√ 
Bs 
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n 
2 

h 

n,n 
2 

s+1 

∞ 

Bsw 

Bsw 

, 

2 2 

. 

2 

s+1  + 

 

 

for n ≥ n2. It follow from (6.3.18) that 
 

1
 

 

 

n−1  .    

 

 

h 
.2 

wn2  
≥ ψn2  

+ lim inf 
→∞ 

 
which means that, 

. 
 

Hn,n2  s=n
 

,
Hn,sBsws+1 + 

n,s 

2
√

Bs 

 

wn2  
≥ ψn2     

for  n ≥ N  (6.3.19) 

 
and  

1 
n−1  .    

 

h 
.2 

lim inf 
n→∞ 

. 
 

Hn,n2  s=n
 

,
Hn,sBsws+1 + 

n,s 

2
√ 
Bs 

< ∞. 

 

Therefore 
 

lim inf 
. 1 

 
 
 
n−1 . 

H
 

2 

 
 
 

B w2 + 
1 

 
 
 
n−1 . 

h
 

 
 

 
,

H w
 

n→∞ Hn,n2  s=n
 

n,s s   s+1 Hn,n2  s=n
 

n,s 
 

 

1 
+ 

n,s 
 

 

1 

s+1 

 
n−1 . 

 

 
2 
n,s 

 
 

 

< ∞. 
 

 
Then 

 

 
 
 

. 
1 

n−1 

 

 
 
 
 

1 
n−1 

4 Hn,n2  s=n 
Bs 

 
 

. 

lim inf 
n→∞ 

. 
Hn,sBsw

2 

H 
2  s=n2 

. 
hn,s

,
Hn,sws+1 

Hn,n2  s=n 

< ∞.  (6.3.20) 

 

Define the functions 
 

 
1 

Un = 
H

 

 
 
n−1 . 

 
 
 

Hn,sBsw
2
 

 

 

and 

 
 

 
1 

Vn = 
H

 

n,n2   s=n2 

 

 
n−1 . 

hn,s 

 
 
 

,
Hn,sws+1. 

n,n2   s=n2 

Then, the inequality (6.3.20) becomes 
 
 

lim inf [Un + Vn] < . (6.3.21) 
n→∞ 

 

Now, we claim that  
∞ . 

2 
s+1 

 

 

< ∞.  (6.3.22) 

 
Suppose to the contrary that 

s=n2 

 
∞ . 

2 
s+1 

 

= ∞.  (6.3.23) 
s=n2 
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Btw 
2 2 

Btw 

− 

∞ 

1 

. 
= − 

2 

 

 

By (6.3.15) there exists a positive constant M1  satisfying 
 

 

inf 
s≥n0 

. 

lim inf 
n→∞ 

Hn,s  

.
 

Hn,n0 

 

> M1.  (6.3.24) 

 

Let M2  be any arbitrary positive number. Then, it follows from (6.3.23) that there 
 

exists a n3 > n2 such that 
 

n . 
Bsw

2 

 

 
 

M2 

≥ for all  n ≥ n3.  

 
 

Therefore, 

 

 
 
 
 

n−1 . 

 
s=n2 

s+1  
M1 

 

 
. 

s−1 
. . 

2 2
 

Un = 
 

Hn,n2  s=n2
 

Hn,s∆  

 
t=n2 

Btwt+1 + Bn2 
wn2 +1 

1 
. 

n−1  
. 

s 
.  . . 

2 
t+1

 ∆2Hn,s − Hn,n2 +1Bn
 
2 
wn2 +1

 + Bn
 
2 
wn2 +1

 

Hn,n2 
 

s=n2 

 

t=n2 

1 
n−1  

. 
s 

. 

≥ 
Hn,n 

. 
 
2  s=n3 

. 
2 
t+1 

t=n2 

n−1 

(−∆2Hn,s) 

1 
≥ 

Hn,n

 
M2  
. 

(  ∆ H  ) 

M1 
2 

M2 
≥ 

M1Hn,n 

s=n3 

 

Hn,n3 

2 n,s 

M2 Hn,n3 

≥ 
M1 Hn,n

 

 

for all  n ≥ n3. 
0 

 

By (6.3.24), there is a n4 ≥ n3 such that 
 

Hn,n3
 

 

Hn,n0 

≥ M1  for all  n ≥ n4, 

 

this implies  

 

Un ≥ M2  for all  n ≥ n4. 

 
Since M2  is arbitrary, 

 

 
 

lim Un = . (6.3.25) 
n→ 

 

Next, consider a sequence {nk } with limk→∞  nk  = ∞ satisfying, 
 

 

lim (Unk 
+ Vnk 

) = lim inf (Un + Vn). 
k→∞ n→∞ 
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V 

nk ,s 

nk ,s 

≤ 

nk 

≤ 

2 

 
 

It follows from (6.3.21) that there exists a number M such that 
 
 

Unk 
+ Vnk   

≤ M  for k = 0, 1, 2, . . . . (6.3.26) 
 
 

It follows from (6.3.25) that 
 
 
 

 
Combining (6.3.26) and (6.3.27), 

 

 
lim Unk  

= ∞.  (6.3.27) 
k→∞ 

 
 

lim Vnk   
= −∞.  (6.3.28) 

k→∞ 

 
From (6.3.26), we have 

 
 
 

 
or 

 

 

1 + 
Vnk 

Unk 

 

 

M  1 
< 

Unk  
2 

Vnk
 

Unk
 

1 
< − 

2 
 

for k large enough. Using the last inequality in (6.3.28), we obtain 
 
 

lim 
2 

= ∞.  (6.3.29) 
k→∞  Unk 

 

On the other hand, by the Schwarz inequality, we have 
 

. 
1 

nk −1 
.2 

V 2   
. ,

H w
 

nk 
= 

 

Hnk ,n2   s=n2
 

hnk ,s nk ,s s+1 

. 
1 

nk −1 
. . 

1
 nk −1 

h2 
. . 

Hn  ,sBsw
2    

. nk ,s 

Hnk ,n 
k 

2  s=n2 

nk −1 

s+1 Hnk ,n 2  s=n2    
Bs

 

1 
≤  Unk H

 
. 

ρs+1rsh
2 . 

 
 

Consequently, 

nk ,n2   s=n2 

 

 
V 2 1

 

 
 

 
nk −1 

nk    
≤ 

. 
ρs+1rsh

2 

Unk Hnk ,n2   s=n 

for all large k. But (6.3.24) guarantees that 
 
 

lim inf 
n→∞ 

Hn,s 

Hn,n0 

 

> M1. 
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nk ,s 

nk ,s 

n,s 

ψ 
Bsw 

n,s 

2 

1 

0 

0 

0 

 

 

This means that there exists a n5 ≥ n4 such that 
 

Hn,n2
 

 

Hn,n0 

≥ M1  for all  n ≥ n5. 

 

Thus, 
 
 
 

 
for k large enough and therefore 

 

V 2
 

 

 

Hnk ,n2 

Hnk ,n0 

 

 
 
 

1
 

 

 

≥ M1 

 

 
 
 
nk −1 

nk    ≤ 
. 

ρs+1rsh
2 

Unk M1Hnk ,n0   s=n 

 

for all large k. It follows from (6.3.29) that 
 

 
lim 

nk −1 .  

ρs+1rsh
2 

 

= ∞.  (6.3.30) 
 

 
 

This gives 

k→∞  Hnk ,n0   s=n 

 
1 

lim sup 

n−1 . 
ρs+1rsh

2 

 

= ∞, 
n→∞ Hn,n0  s=n 

which contradicts (6.3.16). Then, (6.3.22) holds. Hence, by (6.3.19), 
 

∞ . 
 

 
s=n2 

 

which contradicts (6.3.17). 

2 
n 

ρs+1rs  

≤
 

∞ . 
 

 
s=n2 

 
2 
s+1 

 

< ∞, 

 

If {zn} satisfies  Case (I I ) of Lemma 6.2.1, then by condition (6.2.2) we have 
 

limn→∞ xn  = 0. This completes the proof. 
 

 

Theorem 6.3.4. Assume that all conditions of Theorem 6.3.3 are satisfied except 
 

condition (6.3.16). Also let 
 
 

1 
lim inf 

 

 
n−1 . 

Hn,sQs  < ∞  (6.3.31) 
 

 
and 

n→∞ 

 
 
 

1
 

Hn,n0  s=n 
 

 

n−1 . 
1 

. 

lim inf 
n→∞ 

 
Hn,N 

. 
 

 
s=N 

Hn,sQs  − ρs+1rsh
2 

4 
≥ ψN . (6.3.32) 

Then every solution of equation (6.1.1) is either oscillatory or converging to zero. 
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. 

. 

4 

4 

 

 

Proof.   The proof is similar to that of Theorem 6.3.3 and hence the details are 
 

omitted. 
 

Now, let us define  

 

Hn,s  = (n − s)β , n ≥ s ≥ 0, 

 

where β ≥ 1 is a constant. Then Hn,n   = 0 for n ≥ 0 and Hn,s  > 0 for n > s ≥ 0. 
 

Clearly ∆2Hn,s ≤ 0 for n > s ≥ 0 and 
 

hn,s  = 
.
(n − s)β − (n − s − 1)β 

. 
(n − s)−(β/2)  ≤ β(n − s)(β−2)/2

 

 
for n > s ≥ 0. We see that (6.3.15) holds, 

 

Hn,s
 

 

 

(n − s)β 

lim 
n→∞  Hn,n0 

= lim 
n→∞  nβ

 
= 1. 

 

Hence, by Theorems 6.3.3 and 6.3.4, we have the following two corollaries. 
 

 

Corollary  6.3.3. Let β ≥ 1 be a constant, and suppose that 
 

 

lim sup 
n→∞ 

 

1 

(n − n0)
β 

n−1 . 
β2ρs+1rs(n − s)β−2 < ∞.  (6.3.33) 

s=n0 

If there is a sequence {ψn} satisfying (6.3.17) and 
 

 

lim sup 
n→∞ 

 

1 

(n − N )β 

n−1 . 
 

 
s=N 

 

(n − s)β Qs − 
β2 

. 
ρs+1rs(n − s)β−2

 

 

≥ ψN (6.3.34) 

 

then every solution of equation (6.1.1) is oscillatory or converging to zero. 
 

 

Proof. The proof follows from Theorem 6.3.3 and hence the details are omitted. 
 

 

Corollary  6.3.4. Let β ≥ 1 be a constant, and suppose that 
 

 

lim inf 
n→∞ 

 

1 

(n − n0)
β 

n−1 . 
(n − s)β Qs < ∞.  (6.3.35) 

s=n0 

If there is a sequence {ψn} satisfying (6.3.17) and 
 

 

lim inf 
n→∞ 

 

1 

(n − N )β 

n−1 . 
 

 
s=N 

 

(n − s)β Qs − 
β2 

. 
ρs+1rs(n − s)β−2

 

 

≥ ψN (6.3.36) 

 

then every solution of equation (6.1.1) is oscillatory or converging to zero. 
 

 

Proof. The proof follows from Theorem 6.3.4 and hence the details are omitted. 
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6.4  Examples 
 

 
In this section, we present some examples to illustrate the main results. 

 
 

Example 6.4.1. Consider the difference equation 
 

. . 
2    

1
 .. 

2   . 
4 
. 

∆ n∆2
 xn + 

.  
xn+s  1

 

2 
−

 
s=1 

+ 
.

 

s=1 

4n + s 
3 

xn+s− 1 = 0. (6.4.1) 

 

Here rn = n, pn,s =  1 , qn,s  = 4n +  4 s, σ = τ = 1, a = 1, b = 2, c = 1, d = 2, and 
2 3 

 

L = 1.  It is easy to see that all conditions of Theorem 6.3.1 are satisfied. Hence 

every solution of equation (6.4.1) is oscillatory. In fact {xn} = {(−1)n} is one such 

oscillatory solution of equation (6.4.1) since it satisfies the equation (6.4.1). 
 
 

Example 6.4.2. Consider the difference equation 
 

. 
2    

1 
. 

2 

∆3 xn + 
.  

xn+s  1
 

2 
−

 
s=1 

+ 
. 

n(n + 1)sx 

s=1 

 

n+s−1 = 0, (6.4.2) 

 

Here rn = 1, pn,s  = 1 ,  qn,s  = n(n + 1)s, σ = τ = 1, a = 1, b = 2, c = 1, and 

d = 2. Let L = 1, α =  1 , β = 1, and ρn = 1. It is easy to see that all conditions of 

Corollary 6.3.1 are satisfied. Hence every solution of equation (6.4.2) is oscillatory. 

 
We conclude this chapter with the following remark. 

 

Remark  6.4.1. The results obtained in this chapter generalize and complement to 

that of in [3, 21, 24, 45, 57, 58]. Further it would be interesting  to extend the results 
 

of this chapter to the equation (6.1.1) when 
.∞  1  < ∞. n=n0  rn 


