
 

 

 
 
 
 
 
 
 

Chapter  4 
 
 

Second Order  Neutral Delay And 

Advanced Difference Equations 
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4.  Second Order  Neutral Delay  And Advanced 
 

Difference Equations 
 
 
 

 

4.1  Introduction 
 

 
In this chapter, we study the oscillatory behavior of solutions of the second order 

neutral delay difference equation of the form 

 

∆(rn∆(xn + pnxn   k )) + q  x  + v xα  = 0,  n ∈ N (4.1.1) 
 
 

and the advanced difference equation of the form 
 
 

∆(rn∆(xn + pnxn+k )) + qnxn+A + vnxα
 = 0,  n ∈ N0 (4.1.2) 

 
 

subject to the following conditions: 
 

 

(C1) {rn} is a positive real sequence with 
.∞  1  = ∞; n=n0  rn 

 

 

(C2) {pn} is a nonnegative real sequence with 0 ≤ pn ≤ p < ∞; 
 

 

(C3) {qn} and {vn} are positive real sequences; 
 
 

(C4) k, A and m are positive integers and α is a ratio of odd positive integers. 
 
 

Let θ  = max{k, A, m}.  By a solution of equation (4.1.1) ((4.1.2)) we mean a 

nontrivial  real sequence {xn} defined for all n ≥ n0 − θ  and satisfying equation 

(4.1.1)((4.1.2)) for all n ≥ n0. We assume that such solutions exist for the equations 

(4.1.1) and (4.1.2). 
 

Most of the results established in the literature for neutral type difference equa- 

tions involve either delay or advanced type arguments,  see for example [1, 2, 7, 8, 

11, 12, 16, 17, 18, 23, 29, 30, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 50, 52, 53, 
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Q∗
 

V ∗ 

1 

 

 

55, 67, 72, 76, 77, 78, 80, 81, 84, 86, 87, 88, 95, 96, 97]. In [2, 7, 8, 31, 87], the 

authors studied the oscillatory behavior of solutions of equation (4.1.1) when vn ≡ 0 

and in [32, 43, 44, 78, 88, 96], the authors studied the oscillation of the equation 

(4.1.1) when qn  ≡ 0. Therefore in this chapter, we discuss the oscillatory behavior 

of equation (4.1.1) which unify the results obtained for linear and nonlinear cases. 

Further the results obtained for the equation (4.1.2) seems to be new even for the 

linear or nonlinear  cases. 
 

In Section 4.2, we discuss the oscillatory behavior of all solutions of equations 

(4.1.1) and (4.1.2), and in Section 4.3, we present some examples to illustrate the 

main results. 

 

4.2    Oscillation Theorems 
 

 
In this section, we obtain some sufficient conditions for the oscillation of all solu- 

tion of equation (4.1.1) and (4.1.2). We use the following notation throughout this 

chapter without further mention: 

 

zn  =  xn + pnxn−k , (4.2.1) 
 

Qn  =  min{qn, qn−k }, Vn = min{vn, vn−k } for all n ∈ N0, (4.2.2) 
n−A−1 

 

n  =  Qn 

. 
 

 
s=n1 

1 
, (4.2.3) 

rs 

. 

n  =  Vn 

n−m−1 . 
 

 
s=n1 

1 .α 

rs 

 
, (4.2.4) 

Un =  21−αVn

.
 

n−m−1 . 
 

 
s=n1 

1 .α 

rs 

 
, (4.2.5) 

un  =  xn + pnxn+k , (4.2.6) 

 

Rn  =  min{qn, qn+k }, Sn = min{vn, vn+k } for all n ∈ N0, (4.2.7) 
∞ 

R∗      
. 

n = 
r 
 
n  

s=n 

Rs, (4.2.8) 
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n  = 

s=n−A+1 

n+A 

 
 

1 
S∗   

 
r 

∞ . 
Ss, (4.2.9) 

 

 

and 

n  s=n 

 

 

1 
∞ 

Tn = 21−α      
. 

Ss. (4.2.10) 
rn 

s=n 
 

Lemma 4.2.1. If 0 ≤ p ≤ 1 and 0 < α ≤ 1, then pα ≥ p. 
 

 

Lemma 4.2.2. If p ≥ 1 and α ≥ 1, then pα ≥ p. 
 
 

The proof of the Lemmas 4.2.1 and 4.2.2 are elementary and hence the details 

are omitted. 

Lemma  4.2.3.  Let {qn}  be  a nonnegative  sequence of real  numbers and A  be   a 

positive integer. Suppose that 
 
 

lim inf 
n→∞ 

n+A−1 . 
 

 
s=n 

 
qs  > 

. 
A 

A + 1 

.A+1  
(4.2.11) 

 

holds, then the difference inequality 
 
 

∆xn − qnxn+A  ≥ 0, n ∈ N0, (4.2.12) 
 
 

cannot have eventual ly positive solutions. 
 
 

Proof. The proof can be found in [26, 40, 51]. 
 
 

Lemma 4.2.4. Let {qn} be a nonnegative  sequence of real numbers, α be a ratio of 

odd positive integers and A ∈ {2, 3, . . .} be such  that 
.n−1

 

 

qs  > 0 for all large 
 

n. Then the difference inequality (4.2.12) has an eventual ly positive solution if and 
 

only if the difference equation 
 
 

∆xn − qnxα
 = 0, n ∈ N0, (4.2.13) 

 
 

has an eventual ly positive solution. 



36  

−  n   n−m  

1 

 

 

Proof. The proof can be found in [26]. 
 

First we study the oscillation of the equation (4.1.1). 
 
 

Lemma  4.2.5.  If  {xn} is a positive solution of equation  (4.1.1), then the corre- 

sponding {zn} satisfies 

 
zn > 0, rn∆zn  > 0, ∆(rn∆zn) < 0 (4.2.14) 

 

 
eventually. 

 
 

Proof.  Assume that {xn} is a positive solution of equation (4.1.1). Then zn  > 0 

for all n ≥ n1 ≥ n0. From the equation (4.1.1), we have 

 

∆(rn∆zn) = −qnxn   A  − v xα  < 0. 
 
 

Consequently, rn∆zn  is nonincreasing and therefore either rn∆zn  > 0 or rn∆zn  ≤ 0 

eventually. If rn∆zn  ≤ 0, then we have 

 

rn∆zn  ≤ rn1 
∆zn1   

< 0 for n ≥ n1. 
 
 

Dividing the last inequality by rn and then summing the resulting inequality from 
 

n1 to n − 1, we obtain 
 

zn < zn1  
+ rn1 

∆zn1
 

n−1 . 
. 

rs 
s=n1 

Letting n → ∞, we  see that zn  < 0 for n ≥ n1, which is a contradiction for the 
 

positivity of {zn}.  This completes the proof. 
 

 

Theorem 4.2.1. Let 0 ≤ p ≤ 1 and 0 < α ≤ 1. If the first order neutral difference 
 

inequality 

1 1 

n  n w
α

 

 

m+k ≤ 0 (4.2.15)
 

∆wn + 
1 + pα 

Q∗ wn−A+k  + 
(1 + pα)α 

V ∗    
n−

 
 

has no positive solution, then every solution of equation (4.1.1) is oscillatory. 
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−  n   n−m  

x 

n−m  
+ p x 

(x + p x 

z 

r 

 

 

Proof.  Let {xn} be a nonoscillatory solution of equation (4.1.1). Without  loss of 
 

generality  we may assume that xn  > 0 and xn−k  > 0 for all n ≥ n1 ≥ n0 − θ. Then 
 

zn > 0, 
 

zn−A  = xn−A + pn−Axn−k−A  ≤ xn−A + pxn−k−A, (4.2.16) 

 
and  

 

zn−m  = xn−m  + pn−mxn−k−m  ≤ xn−m  + pxn−k−m.  (4.2.17) 

 
From the equation (4.1.1), we have 

 

 
∆(rn∆zn) + qnxn   A  + v xα  = 0, (4.2.18) 

 
 

and  

 
pα∆(rn 

 

 
 

−k ∆z 

 
 
 

n−k 

 

 
) + pαq 

 
 
 

n−k 

 

 
 

xn−k−A 

 

 
+ pαv 

 
 
 

n−k 

 

 
 
α 
n−k−m  

 

 
 

= 0. (4.2.19) 

 
Combining (4.2.18) and (4.2.19), then using (4.2.2) we get 

 
 

∆(rn∆zn + pαrn −k ∆z 
 

n−k 
) + Qn (xn−A + pαx n−k−A) 

 

+ Vn(xα
 

α   α 
n−k−m  ) ≤ 0. (4.2.20) 

 
 

Applying Lemma 4.2.1 in the second  term of the inequality (4.2.20) and using 
 

(4.2.16), we have 
 
 

∆(rn∆zn + pαrn −k ∆z 
 

n−k 
) + Qn zn−A 

+ Vn 
α 
n−m  

α   α 
n−k−m  ) ≤ 0. (4.2.21) 

 
 

Using Lemma 2.2.1 and (4.2.17) in (4.2.21), we have 
 
 

∆(rn∆zn + pαrn −k ∆z 
 

n−k 
) + Qn zn−A 

+ Vn 
α 
n−m  ≤ 0. (4.2.22) 

 
 

Since yn = rn∆zn  > 0 is decreasing, we have 
 

n−1   
1
 

zn ≥ yn 

.   
. (4.2.23) 

s 
s=n1 



38  

y 

n 

 

 

Substituting (4.2.23) in (4.2.22), we get 
 

n−A−1  
1
 

 

 

.
n−m−1 

 

 

1 
.α 

∆(yn + pαyn −k ) + Qn yn−A 

.   
+ Vn 

r 
α 

.    
 

n−m  r ≤ 0. 
s=n1 

s 
 

By using (4.2.3) and (4.2.4), we have 

s=n1  
s 

 
 

∆(yn + pαyn
 

k ) + Q∗ y
 

+ V ∗yα ≤ 0. (4.2.24)
 

− n   n−A n   n−m  
 

 

Define a function wn  by  

 
wn = yn + pαyn 

 

 
 

−k . 
 

Then wn > 0. By using monotonicity of {yn}, we have 
 

 

wn ≤ (1 + pα)yn −k . (4.2.25) 
 

 

Combining (4.2.25) and (4.2.24), we  see that  {wn} is a positive  solution of the 
 

following inequality 
 

1 1 

n  n w
α

 

 

m+k ≤ 0,
 

∆wn + 
1 + pα 

Q∗ wn−A+k  + 
(1 + pα)α 

V ∗    
n−

 

 
which is a contradiction to (4.2.15) and the proof is now complete. 

 
 

Theorem 4.2.2. Let p ≥ 1 and α ≥ 1. If the first order neutral difference inequality 
 

1 1 α
 

∆wn + 
1 + pα 

Q∗ wn−A+k  + 
(1 + pα)α 

Unw
 n−m+k 

≤ 0 (4.2.26) 

 
has no positive solution, then every solution of equation (4.1.1) is oscillatory. 

 
 

Proof.  The proof is similar to that of Theorem 4.2.1 by using Lemmas 4.2.2 and 
 

2.2.2 instead of Lemmas 4.2.1 and 2.2.1 and hence the details are omitted. 
 
 

Corollary  4.2.1. Assume that A > k and A > m. If α = 1, and 
 

 
lim inf 

n−1 . 
(Q∗ + V ∗) > (1 + p)

. m − k 
.m−k+1  

(4.2.27) 
n→∞ 

s s 

s=n−m+k 
m − k + 1 

 

then every solution of equation (4.1.1) is oscillatory. 
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− 

. 
V ∗ 

− 

. 

 

 

Proof. Assume that {wn} is a positive solution of (4.2.15). Then {wn} is decreasing 
 

and if A > m, then 
 

wn−A  ≥ wn−m. 
 

Using the last inequality in (4.2.15), we get that {wn} is a positive solution of the 

difference inequality 
 

1 
∆wn + 

1 + p 
(Q∗  + V ∗)wn−m+k  ≤ 0. (4.2.28) n  n 

 

 

Inview of condition (4.2.27), Lemmas 2.2.3 and 2.2.5 implies that  the inequality 

(4.2.28) has no positive solution, which is a contradiction. Therefore (4.2.15) has no 

positive solution and now the result follows from Theorem 4.2.1. 
 

 

Corollary  4.2.2. Assume A > k and A < m. If α = 1, and 
 

n−1
 

 
 
A−k+1

 
 

lim inf 
. 

A k 
.

 
(Q∗ + V ∗) > (1 + p) 

 

(4.2.29) 
n→∞ 

s s 

s=n−A+k 
A − k + 1 

then every solution of equation (4.1.1) is oscillatory. 
 

Proof.  The proof is similar to that of Corollary 4.2.1 and hence the details are 

omitted. 
 

 

Corollary  4.2.3. Assume qn ≡ 0, m > k and 0 < α < 1 in equation (4.1.1). If 

∞ 

s  = ∞  (4.2.30) 
s=n0 

then every solution of equation (4.1.1) is oscillatory. 
 

Proof. The proof follows by applying Lemmas 2.2.3 and 2.2.4 in Theorem 4.2.1 and 

hence the details are omitted. 
 

 

Corollary  4.2.4. Assume qn  ≡ 0, m > k and α > 1 in equation (4.1.1). If there 
 

exists a λ > 0 such that λ >   1   logα and 
m−k 

lim inf 
.
Unexp(   eλn)

. 
> 0 (4.2.31) 

n→∞ 
 

then every solution of equation (4.1.1) is oscillatory. 
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− 

1 

. 

α 

 

 

Proof. The proof follows by applying Lemmas 2.2.3 and 2.2.6 in Theorem 4.2.2 and 
 

hence the details are omitted. 
 
 

Corollary  4.2.5. Assume Vn ≡ 0 and A > k. If 
 

n−1
 

 

 
 
A−k+1

 
 

lim inf 
. 

A k  
.

 
Q∗  > (1 + p) 

 

(4.2.32) 
n→∞ 

s 

s=n−A+k 
A − k + 1 

 

then every solution of equation (4.1.1) is oscillatory. 
 

Proof. The proof follows by applying Lemmas 2.2.3 and 2.2.5 in Theorem 4.2.1 and 

hence the details are omitted. 
 

Now we study the oscillation solution of the equation (4.1.2). 
 
 

Lemma  4.2.6.  If  {xn} is a positive solution of equation  (4.1.2), then the corre- 

sponding {un} satisfies 

 
un  > 0, rn∆un > 0, ∆(rn∆un) < 0 (4.2.33) 

 
 

eventually. 
 

Proof.  The proof is similar to  that  of Lemma 4.2.5 and hence the details are 

omitted. 
 
 

Theorem  4.2.3.  Let 0 ≤ p ≤ 1 and 0 < α  ≤ 1.  If  the first order difference 
 

inequality 

∆un − 
1 + pα 

.
R∗ un+A + S∗ u

 . 
≥ 0, (4.2.34)

 
n  n   n+m 

 
has no positive solution, then every solution of equation (4.1.2) is oscillatory. 

 

Proof.  Let {xn} be a nonoscillatory solution of equation (4.1.2). Without  loss of 

generality  we may assume that xn  > 0 and xn+k > 0 for all n ≥ n1 ≥ n0 − θ. Then 

un  > 0, 
 

un+A  = xn+A + pn+Axn+A+k  ≤ xn+A + pxn+A+k , (4.2.35) 



41  

n+m 

n+m+k = 0. (4.2.38) 

n+m + p x 

n+m + p x 

n+m 

s+m 

s+m 

s+m 

n 

Ssu . 

 

 

and  

 

un+m = xn+m + pn+mxn+m+k  ≤ xn+m + pxn+m+k . (4.2.36) 
 

From the equation (4.1.2), we have 
 
 

∆(rn∆un) + qnxn+A + vnxα
 = 0, (4.2.37) 

 
 

and 
 

 
 

pα∆(rn+k ∆un+k ) + pαqn+k xn+A+k  + pαvn+k x
α

 
 

 

Combining (4.2.37), (4.2.38) and (4.2.7) we get 
 
 

∆(rn∆un + pαrn+k ∆un+k ) + Rn(xn+A + pαxn+A+k ) + Sn(xα
 

α   α 
n+m+k ) ≤ 0. 

 
 

Applying Lemma 4.2.1 in the second term of the last inequality, we get 
 
 

∆(rn∆un + pαrn+k ∆un+k ) + Rn(xn+A + pxn+A+k ) + Sn(xα
 

α   α 
n+m+k ) ≤ 0. 

 
 

Using Lemma 2.2.1, (4.2.35) and (4.2.36) in the last inequality, we have 
 
 

∆(rn∆un + pαrn+k ∆un+k ) + Rnun+A + Snuα
 ≤ 0. (4.2.39) 

 
 

Summing the inequality (4.2.39) from n to ∞, we have 
 

∞  ∞ 

−(rn∆un + pαrn+k ∆un+k ) + 
. 

Rsus+A + 
. 

Ssu
α ≤ 0 

s=n 

 

or 
∞ 

s=n 

 

 
∞ 

rn∆un + pαrn+k ∆un+k  ≥ 
. 

Rsus+A + 
. 

Ssu
α . 

s=n s=n 

Using the monotonicity of {un} in the last inequality, we have 
 

∞  ∞ 

rn∆un(1 + pα) ≥ 
. 

Rsus+A + 
. 

Ssuα
 

 
 

or 

1 
. 

1
 

s=n 

 

 
∞ 

s=n 

 

1 
∞  

. 

∆un ≥ 
1 + pα

 

. 
 

rn 
s=n 

Rsus+A +     
.

 
r 

s=n 

α 
s+m 
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∆un − 
1 + pα 

.
R  un+A + Tnu

 

 

 

Using (4.2.8) and (4.2.9) the last inequality becomes 
 

1 
∆un ≥ 

1 + pα
 
.

R∗ un+A + S∗ uα  
.

,
 

n  n   n+m 
 

 

or 

1 
∆un − 

1 + pα
 

 
.

R∗ un+A + S∗ uα 

 
. 
≥ 0. n  n   n+m 

 
Thus {un} is a positive solution of the inequality (4.2.34), which is a contradiction 

 

to (4.2.34). The proof is now complete. 
 
 

Theorem 4.2.4. Let p ≥ 1 and α ≥ 1. If the first order difference inequality 
 

1 ∗ α 
n n+m 

. 
≥ 0 (4.2.40) 

 

 

has no positive solution, then every solution of equation (4.1.2) is oscillatory. 
 
 

Proof.  The proof is similar to that of Theorem 4.2.3 by using Lemmas 4.2.2 and 
 

2.2.2 instead of Lemmas 4.2.1 and 2.2.1 and hence the details are omitted. 
 
 

Corollary  4.2.6. If A < m, α = 1 and 
 

 
lim inf 

n+m−1 . 
. 

m 
(R∗ + S∗) > (1 + p) 

.m+1  
(4.2.41) 

n→∞ 
s s 

s=n 
m + 1 

 

then every solution of equation (4.1.2) is oscillatory. 
 

Proof. The proof follows by applying Lemma 4.2.3 in Theorem 4.2.3 and hence the 

details are omitted. 
 
 

Corollary  4.2.7. If A > m, α = 1 and 
 

 
lim inf 

n+A−1 . 
. 

A 
(R∗ + S∗) > (1 + p) 

.A+1  
(4.2.42) 

n→∞ 
s s 

s=n 
A + 1 

 

then every solution of equation (4.1.2) is oscillatory. 
 
 

Proof. The proof follows by applying Lemma 4.2.3 in Theorem 4.2.3 and hence the 

details are omitted. 
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s 

s 

 

 

Corollary  4.2.8. If A < m, α = 1 and 
 

n+m−1 

 
 

. 
m  

.m+1 

lim inf 
n→∞ 

. 
 

 
s=n 

(R∗ + Ts) > (1 + p)  

m + 1 
(4.2.43) 

 

then every solution of equation (4.1.2) is oscillatory. 
 

Proof. The proof follows by applying Lemma 4.2.3 in Theorem 4.2.4 and hence the 

details are omitted. 
 
 

Corollary  4.2.9. If A > m, α = 1 and 
 

n+A−1 

 
 

. 
A 
.A+1 

lim inf 
n→∞ 

. 
 

 
s=n 

(R∗ + Ts) > (1 + p)  

A + 1 
, (4.2.44) 

 

then every solution of equation (4.1.2) is oscillatory. 
 

Proof. The proof follows by applying Lemma 4.2.3 in Theorem 4.2.4 and hence the 

details are omitted. 
 
 

4.3  Examples 
 

 
In this section, we present some examples to illustrate the main results. 

 
 

Example 4.3.1. Consider the neutral difference equation 
 

. 
1 

.
 

∆ 
n 
∆(xn + 2xn−1)  +

 

2 

n 
xn−4 + 

2 

n + 1 

 

xn−2  = 0, n ≥ 1. (4.3.1) 

 

Here rn = 1 , pn = 2, qn  = 2 , vn  =   2   , k = 1, A  = 4, m = 2, and α = 1. It is 
n  n  n+1 

 

easy to see that all conditions of Corollary 4.2.1 are satisfied. Hence every solution 
 

of equation (4.3.1) is oscillatory. In fact {xn} = 

,
(−1)n

,
 
 

is one such solution of 
 

equation (4.3.1) since it satisfies the equation (4.3.1). 
 
 

Example 4.3.2. Consider the neutral difference equation 
 

. 
1 

.
 

∆ 
n 
∆(xn + 2xn−1)  +

 

2 

n + 1 

 

xn−2 + 
2 

n 
xn−4  = 0, n ≥ 1. (4.3.2)
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n−3 

n10   n−4
 

e 

 
 

Here rn = 1 , pn = 2, qn  =   2   , vn  = 2 , k = 1, A  = 2, m = 4, and α = 1. It is 
n  n+1  n 

 

easy to see that all conditions of Corollary 4.2.2 are satisfied. Hence every solution 
 

of equation (4.3.2) is oscillatory. In fact {xn} = 

,
(−1)n

,
 
 
is one such solution of 

 

equation (4.3.2) since it satisfies the equation (4.3.2). 
 
 

Example 4.3.3. Consider the neutral difference equation 
 

. 
1 

.
 

∆ 
n 
∆(xn + 2xn−2)  +

 

1 

n7/5 

 

x
1/5   

= 0, n ≥ 1. (4.3.3) 

 

Here rn =  1 , pn = 2, qn = 0, vn =   1   , k = 2, m = 3, and α =  1 . It is easy to see 
n  n7/5 5 

 

that all conditions of Corollary 4.2.3 are satisfied. Hence every solution of equation 
 

(4.3.3) is oscillatory. 
 
 

Example 4.3.4. Consider the neutral difference equation 
 

. 
1 

.
 

∆ 
n 
∆(xn + 3xn−2)  +

 

een
 

  x5  = 0, n ≥ 1. (4.3.4) 

 
n 

Here rn = 1 , pn = 3, qn  = 0, vn  =  e    , k = 2, m = 4, and α = 5. Choose λ = 1. 
n  n10 

 

Then it is easy to see that all conditions of Corollary 4.2.4 are satisfied. Hence every 

solution of equation (4.3.4) is oscillatory. 

 

Example 4.3.5. Consider the neutral difference equation 
 

. 
1 

.
 

∆ 
n 
∆(xn + 2xn+1)  +

 

1 

n(n + 1) 

 

xn+2 + 
1 

n(n + 1) 

 

xn+3 = 0, n ≥ 1. (4.3.5) 

 

Here rn = 1 , pn = 2, qn  =     1     , vn  =     1     , k = 1, A = 2, m = 3, and α = 1. 
n  n(n+1) n(n+1) 

 

It  is easy to see  that all conditions of Corollary 4.2.6 are satisfied. Hence every 

solution of equation (4.3.5) is oscillatory. 

 

Example 4.3.6. Consider the neutral difference equation 
 

. 
1 

.
 

∆ 
n 
∆(xn + 2xn+1)  +

 

1 

n(n + 1) 

 

xn+3 + 
1 

n(n + 1) 

 

xn+2 = 0, n ≥ 1. (4.3.6) 
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Here rn = 1 , pn = 2, qn  =     1     , vn  =     1     , k = 1, A = 3, m = 2, and α = 1. 
n  n(n+1) n(n+1) 

 

It  is easy to see  that all conditions of Corollary 4.2.7 are satisfied. Hence every 

solution of equation (4.3.6) is oscillatory. 

 

We conclude this chapter with the following remark. 
 

Remark  4.3.1.  The results presented in this chapter extend and generalize  some 

of the known results in [2, 7, 8, 31, 32, 43, 44, 78, 87, 88, 96]. Further it would 

be interesting to obtain oscillation results for the equations (4.1.1) and (4.1.2) when 
 
.∞  1

 

n=n0 rn  
< ∞. 


