Chapter 3

Singularity of θ-graphs

In this chapter we establish a necessary and sufficient condition for a graph G to be singular. Further, we have characterized the singularity of θ-graphs and have found the nullity of θ-graphs.

3.1 Introduction

In the following we list some fundamental concepts which are useful for our purpose.

Definition 3.1.1. A bicyclic graph is a simple connected graph in which number of edges equal the number of vertices plus one.

The cycle and the path on n vertices are denoted by C_n and P_n, respectively. Let C_p and C_q be two vertex-disjoint cycles. Suppose that v_0 is a vertex of C_p and v_l is a vertex of C_q. Joining v_0 and v_l by a path $v_0v_1\ldots v_l$ of length l, where $l \geq 0$ ($l = 0$ means identifying v_0 with v_l), the resulting graph is called an ∞-graph and is denoted by $\infty(p,l,q)$ [see Figure 3.1]. We denote by B_n^*, the class of all bicyclic graphs that have an ∞-graph as an induced subgraph.
Let P_{l+1}, P_{p+1} and P_{q+1} be three vertex-disjoint paths, where $\min\{p, l, q\} \geq 1$ and at most one of them is 1. Identifying the initial vertices and the terminal vertices of P_{l+1}, P_{p+1} and P_{q+1}, respectively, the resultant graph is called a θ-graph and is denoted by $\theta(p, l, q)$. By \mathcal{B}^{**}_n, we denote the class of all bicyclic graphs that have a θ-graph as an induced subgraph.

![Figure 3.1: ∞-graph and θ-graph](image)

Thus the class \mathcal{B}_n, of bicyclic graphs can be partitioned into two classes: the class of graphs which contain an ∞-graph as an induced subgraph and the class of graphs which contain a θ-graph as an induced subgraph i.e., $\mathcal{B}_n = \mathcal{B}^*_n \cup \mathcal{B}^{**}_n$.

Definition 3.1.2. A bicyclic graph G which is either a θ-graph or obtained by attaching some pendent vertices to a θ-graph is called an *elementary* θ-graph.

We will use the following well-known results in computing the nullity of a graph.

Theorem 3.1.3. [16] Let v be a pendent vertex of a graph G and u be the vertex in G adjacent to v. Then, $\eta(G) = \eta(G - u - v)$, where $G - u - v$ is the induced subgraph of G obtained by deleting u and v.

30
Chapter 3

Singularity of θ-graphs

Theorem 3.1.4. [15] A path with four vertices of valency 2 in a graph G can be replaced by an edge [see Figure 3.2] without changing the value of $\eta(G)$.

![Figure 3.2:](image)

Theorem 3.1.5. [15] Let G_1 and G_2 be two bipartite graphs. If $\eta(G_1) = 0$, and if the graph G is obtained by joining an arbitrary vertex of G_1 by an edge with an arbitrary vertex of G_2, then the relation $\eta(G) = \eta(G_2)$ holds.

Theorem 3.1.6. [15] Let G be a bipartite graph in which there does not exist any cycle of length $q \equiv 0 \pmod{4}$, then $\eta(G) = n - 2q$, where q is maximum number mutually nonadjacent edges in G.

Definition 3.1.7. [49] Let $V(G)$ and $E(G)$ denote the vertex set $\{v_1, v_2, \ldots, v_n\}$ and the edge set of a graph G, respectively. The neighborhood of a vertex $v \in V$ in G is defined to be $N(v) = \{u \in V(G) \mid uv \in E(G)\}$. A nonzero vector $(\alpha_1, \alpha_2, \ldots, \alpha_n)^t$ is a null-eigenvector of G if and only if for each $v_i \in V(G)$ we have $\sum_{v_j \in N(v_i)} \alpha_j = 0$. Let $A(G) = [C_1, C_2, \ldots, C_n]$, where C_j is the jth column.
vector of $A(G)$. If G is singular and $(\alpha_1, \alpha_2, \ldots, \alpha_n)^t$ is a null-eigenvector of $A(G)$, then the relation

$$\alpha_1C_1 + \alpha_2C_2 + \cdots + \alpha_nC_n = 0$$

is called a kernel relation of G.

Definition 3.1.8. A subset A of a vector space is said to be minimal dependent set if

(a) A is dependent

(b) any proper subset of A is linearly independent.

Definition 3.1.9. [49] A pair V_1, V_2 of subsets of $V(G)$ is said to satisfy the property (N) if (a) V_1 and V_2 are nonempty and disjoint, and (b) $\bigcup\{N(v) \mid v \in V_1\} = \bigcup\{N(v) \mid v \in V_2\}$. Further, such a pair is said to be minimal satisfying the property (N) if for any pair U_1, U_2 of $V(G)$ satisfying the property (N) with $U_1 \subseteq V_1, U_2 \subseteq V_2$, we have $U_1 = V_1, U_2 = V_2$.

Theorem 3.1.10. [49] Let G be a connected graph on $n \geq 2$ vertices. If G is singular, then $V(G)$ has a pair of subsets satisfying the property (N).

Definition 3.1.11. [49] A pair V_1, V_2 of subsets of $V(G)$ is said to satisfy the property (S) if it satisfies the property (N) and for all pairs u, v in $V_i, i = 1, 2$, we have $N(u) \cap N(v) = \emptyset$.

32
Theorem 3.1.12. [49] If $V(G)$ has a pair of subsets V_1 and V_2 satisfying the property (S), then G is singular.

Theorem 3.1.13. [49] Let T be a nontrivial tree. Then, the following statements are equivalent.

(a) T is singular.

(b) There exist subsets V_1 and V_2 of $V(T)$ satisfying the property (N).

(c) There exist subsets V_1 and V_2 of $V(T)$ satisfying the property (S).

Theorem 3.1.14. [49] A unicyclic graph G is singular if and only if there is a pair of subsets V_1 and V_2 of $V(G)$ satisfying the property (N).

Definition 3.1.15. [49] An elementary unicyclic graph is a graph G which is either a cycle or is obtained by attaching some pendent vertices to a cycle. An outer matching of a unicyclic graph G which is not elementary is a matching M_0 in G such that $G - V(M_0)$ is the disjoint union of an elementary unicyclic graph and a set of isolated vertices (possibly empty).

Proposition 3.1.16. [50] Let G be an elementary unicyclic graph on n vertices having a pendant. Then $\eta(G) = n - 2q$, where q is the maximum number of mutually nonadjacent edges in G.

Theorem 3.1.17. [50] A unicyclic graph G is singular if and only if one of the following holds:
(a) \(G\) is singular elementary.

(b) \(G\) is obtained from a singular elementary unicyclic graph \(G_0\) by attaching trees at vertices of \(G_0\) such that the graph \(G - V(G_0)\) has a perfect matching.

(c) There exists a tree \(T_v\) attached at a vertex \(u\) of the cycle with \(uv\) as the attaching edge such that none of \(T_v\) and \(T_v - v\) has a perfect matching.

Theorem 3.1.10 gives a necessary condition for \(G\) to be singular. Theorem 3.1.13 and Theorem 3.1.14 shows that this necessary condition is also sufficient for unicyclic and acyclic graphs. In general, this condition is not sufficient. For example, consider the graph \(\infty(3, 3, 3)\) [see Figure 3.3] on the vertex set \(\{1, 2, 3, 4, 5, 6, 7, 8\}\). Then \(V_1 = \{1, 2, 5, 6\}\), \(V_2 = \{3, 4, 7, 8\}\) is a minimal pair in \(\infty(3, 3, 3)\) satisfying the property (N), though \(\infty(3, 3, 3)\) is nonsingular.

![Figure 3.3: \(\infty(3, 3, 3)\)](image)

In section 2 of this chapter, we derive a necessary and sufficient condition for a graph to be singular. We also prove two results which will be useful to find the nullity of a graph. In section 3, we show how this characterization can be used to find the nullity of a graph in \(B_n^{**}\).

34
Chapter 3 Singularity of θ-graphs

3.2 Necessary and sufficient condition for a graph to be singular

By $A[n]$ we denote the multiset obtained by taking n copies of each element of the set A. By $A[n] \cup B[m]$ we mean the multiset obtained by taking n copies of each element of the set A and m copies of each element of the set B. Clearly $A[1] \cup B[1] = A \cup B$, if and only if A and B are disjoint.

Definition 3.2.1. A pair of subsets $V_1 = \{v_i \mid i = 1, 2, \ldots, l\}$ and $V_2 = \{v_i \mid i = l+1, l+2, \ldots, k\}$ of $V(G)$ is said to satisfy the property (NS) if (a) V_1 and V_2 are nonempty and disjoint, (b) there exist positive integers $\alpha_1, \alpha_2, \ldots, \alpha_l, \beta_{l+1}, \beta_{l+2}, \ldots, \beta_k$ such that $\cup\{N(v_i)[\alpha_i] \mid v_i \in V_1\} = \cup\{N(v_i)[\beta_i] \mid v_i \in V_2\}$. Further, such a pair is said to be minimal satisfying the property (NS) if for any pair U_1, U_2 of $V(G)$ satisfying the property (NS) with $U_1 \subseteq V_1$, $U_2 \subseteq V_2$, we have $U_1 = V_1$, $U_2 = V_2$.

Note that a pair V_1 and V_2 of $V(G)$ satisfying the property (NS) satisfy the property (N). Also a pair V_1 and V_2 of $V(G)$ satisfying the property (S) satisfy the property (NS).

Theorem 3.2.2. A graph G is singular if and only if there exist a minimal pair satisfying the property (NS).

Proof. (Proof of the necessary part) Let G be singular, therefore columns of $A(G)$ are linearly dependent. Let $\{C_1, C_2, \cdots, C_l\}$ be minimal dependent set of columns of $A(G)$. There exist non-zero integers $\alpha_1, \alpha_2, \ldots, \alpha_l$ with g.c.d. equal
Section 3.2 Necessary and sufficient condition for a graph to be singular

to 1 such that
\[\alpha_1 C_1 + \alpha_2 C_2 + \cdots + \alpha_l C_l = 0 \]

Let \(V_1 = \{ v_j \mid \alpha_j > 0 \} \) and \(V_2 = \{ v_j \mid \alpha_j < 0 \} \). Since \(A(G) \) is nonnegative and has no zero columns, \(V_1 \) and \(V_2 \) are nonempty. Clearly, \(V_1 \cap V_2 = \emptyset \), and we have
\[
\sum_{v_j \in V_1} \alpha_j C_j = \sum_{v_j \in V_2} \beta_j C_j, \tag{3.2.1}
\]
where \(\alpha_j = -\beta_j \).

Let
\[X = \cup \{ N(v_j)[\alpha_j] \mid v_j \in V_1 \} \]

and
\[Y = \cup \{ N(v_j)[\beta_j] \mid v_j \in V_2 \}. \]

Let \(v_i \in X \) and it appears \(\gamma \) times in \(X \). Therefore there exist
\[\alpha_i, \alpha_{i+1}, \ldots, \alpha_s \in \{ \alpha_j \mid v_j \in V_1 \} \]
such that \(v_i \in N(v_p) \), where \(p = i, i + 1, \ldots, s; v_i \notin N(v_r) \) for \(r \notin \{ i, i + 1, \ldots, s \} \) and \(\alpha_i + \alpha_{i+1} + \cdots + \alpha_s = \gamma \) since \(G \) is without loops. Therefore \(a_{ip} = 1 \), where \(p = i, i + 1, \ldots, s \); and \(a_{ir} = 0 \) for \(r \notin \{ i, i + 1, \ldots, s \} \). This implies that the \(i \)th entry of the vector \(\sum_{v_j \in V_1} \alpha_j C_j \) is \(\gamma \). In view of (3.2.1), the \(i \)th entry of the vector \(\sum_{v_j \in V_2} \beta_j C_j \) must be \(\gamma \). Consequently, there exist
\[\beta_j, \beta_{j+1}, \ldots, \beta_t \in \{ \beta_j \mid v_j \in V_2 \} \]
such that \(a_{ip} = 1 \), where \(p = j, j + 1, \ldots, t; a_{ir} = 0 \) for \(r \notin \{ j, j + 1, \ldots, t \} \) and \(\beta_j + \beta_{j+1} + \cdots + \beta_t = \gamma \). Therefore \(v_i \in N(v_p) \), where \(p = j, j + 1, \ldots, t; v_i \notin N(v_r) \) for \(r \notin \{ j, j + 1, \ldots, t \} \), i.e., \(v_i \) appears \(\gamma \) times in \(Y = \cup \{ N(v_j)[\beta_j] \mid v_j \in V_2 \}. \)
Interchanging the role of X and Y, we can show that if v_i appears m times in Y, then it also appears m times in X. Therefore $X = Y$.

\textbf{(Proof of the sufficient part)} Suppose $V(G)$ has a minimal pair V_1, V_2 satisfying the property (NS). Let $V_1 = \{v_1, v_2, \ldots, v_l\}$ and $V_2 = \{v_{l+1}, v_{l+2}, \ldots, v_k\}$. Therefore there exist positive integers $\alpha_1, \alpha_2, \ldots, \alpha_l, \beta_{l+1}, \beta_{l+2}, \ldots, \beta_k$ such that

$$\bigcup \{N(v_i)[\alpha_i] \mid v_i \in V_1\} = \bigcup \{N(v_i)[\beta_i] \mid v_i \in V_2\}.$$

Now v_i appears γ times in $\bigcup \{N(v_i)[\alpha_i] \mid v_i \in V_1\}$ if and only if it appears γ times in $\bigcup \{N(v_i)[\beta_i] \mid v_i \in V_2\}$. Therefore,

$$\sum_{v_j \in V_1} \alpha_j C_j = \sum_{v_j \in V_2} \beta_j C_j,$$

which shows that the columns of $A(G)$ are linearly dependent.

\textbf{Corollary 3.2.3.} Let V_1, V_2 be a pair in $V(G)$ satisfying the property (NS). Let x_j be defined by

$$x_j = \begin{cases}
\alpha_j & \text{if } v_j \in V_1, \\
-\beta_j & \text{if } v_j \in V_2, \\
0 & \text{otherwise.}
\end{cases}$$

Then $(x_1, x_2, \ldots, x_n)^t$ is a null-eigenvector of G.

\textbf{Example 3.2.4.} For the graph G, [see Figure 3.4] $V_1 = \{1, 5, 9, 13\}$ and $V_2 = \{2, 3, 7\}$.

\textbf{Chapter 3} Singularity of θ-graphs

37
Section 3.2 Necessary and sufficient condition for a graph to be singular

{3, 7, 11} is a pair satisfying property (NS). Since

\[N(1)[1] \cup N(5)[1] \cup N(9)[1] \cup N(13)[1] = N(3)[1] \cup N(7)[2] \cup N(11)[1], \]

therefore \(G \) is singular. Also, we see that

\[(1, 0, -1, 0, 1, 0, -2, 0, 1, 0, -1, 0, 1)^T\]

is a null eigenvector of \(G \).

Before ending this section, we prove two results which will be useful for the next section.

Lemma 3.2.5. Let \(G \) be a singular bipartite graph with bipartition \(V', V'' \). If \(V_1, V_2 \) is a minimal pair satisfying property (NS), then \(V_1 \cup V_2 \subseteq V' \) or \(V_1 \cup V_2 \subseteq V'' \).

Proof. The vertices of \(G \) can be labeled so that adjacency matrix takes the form

\[
A = \begin{pmatrix}
0 & B \\
B^T & 0
\end{pmatrix}.
\]
Let \(\begin{pmatrix} x' \\ x'' \end{pmatrix} \) be the kernel eigenvector of \(G \) corresponding to the minimal pair \(V_1, V_2 \). If \(x' \neq 0 \) and \(x'' \neq 0 \), then \(\begin{pmatrix} x' \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 \\ x'' \end{pmatrix} \) are also kernel eigenvectors of \(G \) which are linearly independent of \(\begin{pmatrix} x' \\ x'' \end{pmatrix} \). Therefore \(V_1, V_2 \) is not a minimal pair for \(G \). Thus either \(x' = 0 \) or \(x'' = 0 \). Without loss of generality let \(x'' = 0 \), therefore \(V_1, V_2 \subseteq V' \).

\[\text{Theorem 3.2.6.} \] Let \(G \) be a singular graph with a minimal pair \((V_1, V_2) \) satisfying property (NS). If \(v_1 \in V_1 \cup V_2 \) and \(G - v_1 \) is the induced subgraph of \(G \) obtained by deleting \(v_1 \), then \(\eta(G) = \eta(G - v_1) + 1 \).

\[\text{Proof.} \] Let \(V(G) = \{v_1, v_2, \ldots, v_n\} \). Without loss of generality assume \(V_1 = \{v_1, v_2, \ldots, v_k\} \) and \(V_2 = \{v_{k+1}, v_{k+2}, \ldots, v_m\} \). Therefore there exist non zero real number \(\alpha_i \), where \(i = 1, 2, 3, \ldots, m \) such that

\[\cup \{N(v_i)[\alpha_i] \mid v_i \in V_1\} = \cup \{N(v_i)[\alpha_j] \mid v_i \in V_2\}. \]

Also \(A(G) \) has the following form

\[
A(G) = \begin{pmatrix}
0 & a_{12} & a_{13} & \cdots & a_{1m} & \cdots & a_{1n} \\
a_{12} & 0 & a_{23} & \cdots & a_{2m} & \cdots & a_{2n} \\
a_{13} & a_{23} & 0 & \cdots & a_{3m} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{1m} & a_{2m} & a_{3m} & \cdots & 0 & \cdots & a_{mn} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & A(G - V_1 \cup V_2) \\
a_{1n} & a_{2n} & a_{3n} & \cdots & a_{mn}
\end{pmatrix}
\]

where \(a_{ij} \) are either 0 or 1. Applying the elementary operations \(R_1 \rightarrow \alpha_1 R_1 + \alpha_2 R_2 + \ldots + \alpha_m R_m \) and \(C_1 \rightarrow \alpha_1 C_1 + \alpha_2 C_2 + \ldots + \alpha_m C_m \) to the matrix \(A(G) \),
Section 3.2 Necessary and sufficient condition for a graph to be singular

we see that

$$A(G) \sim \begin{pmatrix} 0 & 0 & 0 & \ldots & 0 & \ldots & 0 \\ 0 & 0 & a_{23} & \ldots & a_{2m} & \ldots & a_{2n} \\ 0 & a_{23} & 0 & \ldots & a_{3m} & \ldots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{2m} & a_{3m} & \ldots & 0 & \ldots & a_{mn} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{2n} & a_{3n} & \ldots & a_{mn} & \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 \\ A(G - v_1) \end{pmatrix}$$

Thus $\eta(G) = 1 + \eta(G - v_1)$.

\[\begin{array}{c}
\begin{array}{c}
5 \\
\vdots \\
6
\end{array}
\begin{array}{c}
4 \\
\vdots \\
7
\end{array}
\begin{array}{c}
3 \\
\vdots \\
1
\end{array}
\begin{array}{c}
2
\end{array}
\begin{array}{c}
8
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
5 \\
\vdots \\
6
\end{array}
\begin{array}{c}
4 \\
\vdots \\
7
\end{array}
\begin{array}{c}
3 \\
\vdots \\
1
\end{array}
\begin{array}{c}
2
\end{array}
\begin{array}{c}
9
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
5 \\
\vdots \\
6
\end{array}
\begin{array}{c}
4 \\
\vdots \\
7
\end{array}
\begin{array}{c}
3 \\
\vdots \\
1
\end{array}
\begin{array}{c}
2
\end{array}
\begin{array}{c}
10
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
5 \\
\vdots \\
6
\end{array}
\begin{array}{c}
4 \\
\vdots \\
7
\end{array}
\begin{array}{c}
3 \\
\vdots \\
1
\end{array}
\begin{array}{c}
2
\end{array}
\begin{array}{c}
9
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
5 \\
\vdots \\
6
\end{array}
\begin{array}{c}
4 \\
\vdots \\
7
\end{array}
\begin{array}{c}
3 \\
\vdots \\
1
\end{array}
\begin{array}{c}
2
\end{array}
\begin{array}{c}
10
\end{array}
\end{array}\]

\[G\]

\[G - 8\]

Figure 3.5:
Example 3.2.7. The graph G in Figure 3.5 is singular. Note that $V_1 = \{9, 8\}$ and $V_2 = \{2, 6\}$ is a minimal pair satisfying property(NS). Thus $\eta(G) = 1 + \eta(G - 8)$.

Also $U_1 = \{9, 1\}$ and $U_2 = \{3, 7\}$ is a minimal pair satisfying property(NS).

Therefore $\eta(G - 8) \geq 1$. Since $\eta(G - 8 - 3) = 0$, therefore $\eta(G) = 2$.

3.3 Singularity of a graph in B_{**}^n

Proposition 3.3.1. Let $\theta(p, l, q)$ be a θ-graph where $p = l = q \equiv 0 \pmod{2}$, then

$$
\eta(\theta(p, l, q)) = \begin{cases}
3 & \text{if } p = l = q \equiv 2 \pmod{4} \text{ or } p = l = q \equiv 0 \pmod{4}, \\
1 & \text{if } p = l \equiv 2 \pmod{4}, q \equiv 0 \pmod{4} \\
& \text{or } p = l \equiv 0 \pmod{4}, q \equiv 2 \pmod{4}.
\end{cases}
$$

Proof. By Theorem 3.1.4, we have

$$
\eta(\theta(p, l, q)) = \begin{cases}
\eta(\theta(2, 2, 2)) & \text{if } p = l = q \equiv 2 \pmod{4}, \\
\eta(\theta(4, 4, 4)) & \text{if } p = l = q \equiv 4 \pmod{4}, \\
\eta(\theta(2, 2, 4)) & \text{if } p = l \equiv 2 \pmod{4}, q \equiv 4 \pmod{4}, \\
\eta(\theta(4, 4, 2)) & \text{if } p = l \equiv 4 \pmod{4}, q \equiv 2 \pmod{4}.
\end{cases}
$$

![Figure 3.6:](image_url)
Now \(\{v_0, v_1\}\) is a minimal pair in \(\theta(2, 2, 2)\) [see Figure 3.6] satisfying property (S). Therefore \(\theta(2, 2, 2)\) is singular. By Theorem 3.2.6, \(\eta(\theta(2, 2, 2)) = 1 + \eta(\theta(2, 2, 2) - v_0) = 1 + \eta(C_4) = 3\). Similarly \(\eta(\theta(4, 4, 4)) = 3\).

Again \(\{u_0, u_1\}\) is a minimal pair in \(\theta(2, 2, 4)\) [see Figure 3.6] satisfying property (S). Therefore \(\theta(2, 2, 4)\) is singular. By Theorem 3.2.6, \(\eta(\theta(2, 2, 4)) = 1 + \eta(\theta(2, 2, 4) - u_0) = 1 + \eta(C_6) = 1\). Similarly \(\eta(\theta(4, 4, 2)) = 1\). Thus the result follows.

Proposition 3.3.2. Let \(\theta(p, l, q)\) be a \(\theta\)-graph where \(p = l = q \equiv 1 \pmod{2}\), then

\[
\eta(\theta(p, l, q)) = 0
\]

\[\begin{align*}
\theta(5, 5, 1) & \quad v_0 \\
\theta(5, 5, 1) & \quad v_2 \quad v_4 \quad v_9 \\
G & \quad v_8 \quad v_6
\end{align*}\]

Figure 3.7:

Proof. By Theorem 3.1.4, we have

\[
\eta(\theta(p, l, q)) = \begin{cases}
\eta(\theta(5, 5, 1)) & \text{if } p = l = q \equiv 1 \pmod{4}, \\
\eta(\theta(3, 3, 3)) & \text{if } p = l = q \equiv 3 \pmod{4}, \\
\eta(\theta(5, 1, 3)) & \text{if } p = l \equiv 1 \pmod{4}, q \equiv 3 \pmod{4}, \\
\eta(\theta(3, 3, 1)) & \text{if } p = l \equiv 3 \pmod{4}, q \equiv 1 \pmod{4}.
\end{cases}
\]

Consider the graph \(G\) which is obtained from \(\theta(5, 5, 1)\) by attaching a single pendant vertex [see Figure 3.7]. By Theorem 3.1.3, \(G\) is singular and \(\eta(G) = 1\). Also \(\{v_0, v_4, v_6\}, \{v_2, v_8, v_9\}\) is a minimal pair satisfying property (S). By Theorem 3.2.6,

\[
\eta(G) = 1 + \eta(G - v_9) = 1 + \eta(\theta(5, 5, 1))
\]
and therefore, \(\eta(\theta(5, 5, 1)) = 0 \). Similarly we can show that

\[
\eta(\theta(3, 3, 3)) = 0 = \eta(\theta(5, 1, 3)) = \eta(\theta(3, 3, 1)).
\]

Thus the result follows.

Proposition 3.3.3. If \(\theta(p, l, q) \) is a \(\theta \)-graph where \(p, l \) are even and \(q \) is odd, then

\[
\eta(\theta(p, l, q)) = \begin{cases}
0 & \text{if } p + l \not\equiv 0 \pmod{4}, \\
1 & \text{if } p + l \equiv 0 \pmod{4}.
\end{cases}
\]

![Figure 3.8:](image)

Proof. Let \(p = l \equiv 2 \pmod{4} \) and \(q \equiv 1 \pmod{4} \). By Theorem 3.1.4, we have

\[
\eta(\theta(p, l, q)) = \begin{cases}
\eta(\theta(2, 2, 1)) & \text{if } q \equiv 1 \pmod{4}, \\
\eta(\theta(2, 2, 3)) & \text{if } q \equiv 3 \pmod{4}, \\
\eta(\theta(4, 4, 1)) & \text{if } q \equiv 1 \pmod{4}, \\
\eta(\theta(4, 4, 3)) & \text{if } q \equiv 3 \pmod{4}.
\end{cases}
\]

Also \(\{v_0\}, \{v_2\} \) is a minimal pair in \(\theta(2, 2, 1) \) [see Figure 3.8] satisfying property (S). By Theorem 3.2.6, \(\eta(\theta(2, 2, 1)) = 1 + \eta(\theta(2, 2, 1) - v_0) = 1 \). Similarly considering other cases we can show that \(\eta(\theta(p, l, q)) = 1 \).
Again let, \(p + l \not\equiv 0 \pmod{4} \), therefore either \(p \equiv 2 \pmod{4}, l \equiv 0 \pmod{4} \) or \(p \equiv 0 \pmod{4}, l \equiv 2 \pmod{4} \). Suppose \(p \equiv 2 \pmod{4} \) and \(l \equiv 0 \pmod{4} \). By Theorem 3.1.4, we have

\[
\eta(\theta(p, l, q)) = \begin{cases}
\eta(\theta(2, 4, 3)) & \text{if } q \equiv 3 \pmod{4}, \\
\eta(\theta(2, 4, 1)) & \text{if } q \equiv 1 \pmod{4}.
\end{cases}
\]

Consider the graph \(G \) of Figure 3.8. Then \(\{v_0, v_3\}, \{v_1, v_2\} \) is minimal pair satisfying property (NS). Therefore \(G \) is singular. By Theorem 3.2.6,

\[
\eta(G) = 1 + \eta(G - v_3) = 1 + \eta(\theta(2, 4, 3)).
\]

Also \(\eta(G) = 1 + \eta(G - v_2) = 1 \), therefore, \(\eta(\theta(2, 4, 3)) = 0 \). Similarly we can show that \(\eta(\theta(2, 4, 1)) = 0 \). Thus the result follows.

Proposition 3.3.4. If \(\theta(p, l, q) \) is a \(\theta \)-graph where \(p, l \) are odd and \(q \) is even, then

\[
\eta(\theta(p, l, q)) = \begin{cases}
0 & \text{if } p + l \not\equiv 0 \pmod{4}, \\
1 & \text{if } p + l \equiv 0 \pmod{4}.
\end{cases}
\]
Chapter 3
Singularity of θ-graphs

Proof. Let $p + l \not\equiv 0 \pmod{4}$. Therefore either $p = l \equiv 1 \pmod{4}$ or $p = l \equiv 3 \pmod{4}$. Let $p = l \equiv 1 \pmod{4}$. By Theorem 3.1.4, we have

$$\eta(\theta(p, l, q)) = \begin{cases}
\eta(\theta(1, 5, 2)) & \text{if } q \equiv 2 \pmod{4}, \\
\eta(\theta(1, 5, 4)) & \text{if } q \equiv 0 \pmod{4}.
\end{cases}$$

Consider the graph G of Figure 3.9. Then $G - v_4 = \theta(1, 5, 2)$. Now $(\{v_0, v_4\}, \{v_2, v_6\})$ is a minimal pair satisfying property (NS). Therefore G is singular. By Theorem 3.2.6,

$$\eta(G) = 1 + \eta(G - v_4) = 1 + \eta(\theta(1, 5, 2)).$$

Also by Theorem 3.2.6, $\eta(G) = 1 + \eta(\infty(3, 0, 3))$. Since $\infty(3, 0, 3)$ is nonsingular, therefore $\eta(\theta(1, 5, 2)) = 0$. Thus $\eta(\theta(p, l, q)) = 0$ if $p = l \equiv 1 \pmod{4}$. Similarly, we can show that, $\eta(\theta(p, l, q)) = 0$ if $p = l \equiv 3 \pmod{4}$.

Let $p + l \equiv 0 \pmod{4}$. So let $p \equiv 1 \pmod{4}, l \equiv 3 \pmod{4}$. By Theorem 3.1.4, we have

$$\eta(\theta(p, l, q)) = \begin{cases}
\eta(\theta(1, 3, 2)) & \text{if } q \equiv 2 \pmod{4}, \\
\eta(\theta(1, 3, 4)) & \text{if } q \equiv 0 \pmod{4}.
\end{cases}$$

Now $(\{v_0, v_1\}, \{v_2, v_3\})$ is a minimal pair in $\theta(1, 3, 2)$ [see Figure 3.10] satisfying property (NS). Therefore $\theta(1, 3, 2)$ is singular. Also by Theorem 3.2.6, $\eta(\theta(1, 3, 2)) = \eta(\theta(1, 3, 2) - v_0) = 1$. Similarly, we can show that $\eta(\theta(1, 3, 4) = 1$.

Thus $\eta(\theta(p, l, q)) = 1$, if $p + l \equiv 0 \pmod{4}$ and q is even .
Singularity of elementary θ-graph: Let G_0 be an elementary θ-graph with pendent vertices. Let v be a pendent vertex in G attached at u of G_0. Then by Theorem 3.1.3, $\eta(G_0) = \eta(G_0 - uv)$. Since $G_0 - uv$ is disjoint union of a tree or a unicyclic graph and a set of isolated vertices (possibly empty), we can find the nullity of $G_0 - uv$.

Definition 3.3.5. A matching M_0 in a graph G in B_n^{**} is called an outer matching in G if $G - V(M_0)$ is the disjoint union of an elementary θ-graph and a set of isolated vertices (possibly empty). (Note that $M_0 = \emptyset$, if G is elementary.)

Remark 3.3.6. If G is a graph in B_n^{**} which is not elementary, then we construct an outer matching M_0 as follows. Let u_1 be a (pendent) vertex which is at a maximum distance from $\theta(p, l, q)$ in G and v_1 the vertex adjacent to u_1. Then v_1 is not on $\theta(p, l, q)$, since G is not elementary. We choose the edge $e_1 = u_1v_1$ as an edge in M_0. Clearly, $G - u_1 - v_1$ is a disjoint union of an elementary θ-graph G_1 and a set of isolated vertices (possibly empty). If G_1 is not elementary, we can choose another edge for M_0 by the same process, and then proceed recursively. The process must terminate and an outer matching M_0 of G is obtained.

Example 3.3.7. Consider the graph G given in Figure 3.11. Here the set M_0 of edges in bold face in the figure is an outer matching of G. The corresponding elementary θ-graph is G_0 (depicted in the figure) and the set of isolated vertices of $G - M_0$ is $\{17, 21\}$.

46
We denote the set of isolated vertices and the elementary component of $G - V(M_0)$ by Λ_0 and G_0, respectively.

Theorem 3.3.8. A graph G in B^{**}_n is singular if and only if one of the following holds:

(a) G is singular elementary θ-graph.

(b) G is obtained from a singular elementary θ-graph G_0 by attaching trees at vertices of G_0 such that the graph $G - V(G_0)$ has a perfect matching.

(c) There exists a tree T_v attached at a vertex u of the θ-graph with uv as the attaching edge such that none of T_v and $T_v - v$ has a perfect matching.

Proof. Suppose G is not elementary and choose an outer matching M_0 of G. Let $G - V(M_0)$ be the disjoint union of the elementary θ-graph G_0 and a set Λ_0 of isolated vertices (possibly empty). We note that G is obtained by attaching trees at the vertices of G_0. In view of Theorem 3.1.3, we have $\eta(G) = \eta(G_0) + |\Lambda_0|$. Therefore, G is singular if and only if either $\Lambda_0 \neq \emptyset$ or G_0 is singular. If $\Lambda_0 = \emptyset$, then $G - V(G_0)$ has a perfect matching, and therefore G is singular if and only
if (b) holds. Suppose $\Lambda_0 \neq \emptyset$ and $w \in \Lambda_0$. Let T_v be a tree in G, attached at a vertex u of the θ-graph with uv as the attaching edge, of which w is a vertex. Since $w \in \Lambda_0$, T_v does not have a perfect matching. Moreover, if $T_v - v$ has a perfect matching, then v is a vertex of G_0. In that case, w is a vertex of $T_v - v$ and therefore is in $V(M_0)$. Since this is not the case, therefore (c) holds.

Corollary 3.3.9. If G is a graph in \mathcal{B}_n^{**} which is not a θ-graph then

$$\eta(G) = \eta(G_0) + |\Lambda_0|$$

Example 3.3.10. The graph G in Figure 3.11 has nullity, $\eta(G) = 2 + \eta(G_0) = 4$, since $\eta(G_0) = 2$.

48