Chapter 4

On the spectral radius of a class of polycyclic graphs

4.1 Introduction

In this chapter we will study the spectral radius of a class of polycyclic graphs.

Definition 4.1.1. A sequence \(\{C_n\} \) of cycles in \(G \) is said to be a sequence of consecutive cycles if any two consecutive cycles in \(\{C_n\} \) have a common edge.
For the graph G_1 in Figure 4.1, consider the sequences
\[S_1 \equiv v_1v_2v_3v_1, v_1v_4v_5v_6v_1, v_1v_3v_4v_1 \text{ and } \]
\[S_2 \equiv v_1v_2v_3v_1, v_1v_4v_5v_6v_1. \]
Then the sequence S_1 is a sequence of consecutive cycles in G_1 but S_2 is not. There exists a sequence of consecutive cycles in G_1, (e.g. S_1) where all the cycles have at most one common vertex, but in G_2 for any sequence of consecutive cycles there exist two vertices in G which are common to all the cycles in the sequence.

Definition 4.1.2. Any two cycles C_1 and C_2 in a graph G are said to be related if there exists a sequence of consecutive cycles in G in which C_1 is first term and C_2 is the last term. For any graph G with cycles, this defines an equivalence relation on the set of cycles in G. For any cycle C in G, the equivalence class of C with respect to the above defined relation is denoted by \overline{C}.

Let $\mathcal{G}(n, k)$ be the class of all connected graphs G on n vertices and k-pendant vertices, in which for any cycle C in G, \overline{C} is such that there exist two vertices in G which are common to all the cycles in C. Clearly G_1 in Figure 4.1, cannot be a subgraph of any graph in $\mathcal{G}(n, k)$. In this chapter, we determine the graph with the largest spectral radius in $\mathcal{G}(n, k)$.

In order to complete the proof of our main result of this chapter we need the following lemmas.

Lemma 4.1.3. [11] Let G_1 and G_2 be two graphs. If $P(G_1, \lambda) < P(G_2, \lambda)$ for $\lambda > \lambda_1(G_2)$, then
\[\lambda_1(G_1) > \lambda_1(G_2). \]
Lemma 4.1.4. [15] If v is a vertex of degree 1 in the graph G and u is the vertex adjacent to v, then
\[P(G, \lambda) = \lambda P(G - v, \lambda) - P(G - u - v, \lambda). \]

Lemma 4.1.5. [11] If G is a connected graph and G' is a proper spanning subgraph of G, then
\[P(G', \lambda) > P(G, \lambda) \quad \text{for all} \quad \lambda \geq \lambda_1(G). \]

Lemma 4.1.6. [61] Let G be a connected graph and $\lambda_1(G)$ be the spectral radius of $A(G)$. Let u, v be two vertices of G and $d(v)$ be the degree of v. Suppose $v_1, v_2, \ldots, v_s \in N(v) \setminus \{N(u) \cup \{u\}\}$, where $1 \leq s \leq d(v)$, and $x = (x_1, x_2, \ldots, x_n)$ is the perron vector of $A(G)$, where x_i corresponds to the vertices v_i ($1 \leq i \leq n$). Let G^* be the graph obtained from G by deleting the edges vv_i and adding the edges uv_i ($1 \leq i \leq s$). If $x_u \geq x_v$ then $\lambda_1(G) < \lambda_1(G^*)$.

Figure 4.2: The graphs G and G_1

Let G be a connected graph consisting of a connected subgraph H and a tree T, such that T is attached to a vertex r of H [see Figure 4.2]. The vertex r is
called root of the tree T or the root vertex of G. The distance between the root r and a vertex of T which is furthest from r is defined as the height of the tree T. Let $|V(T)|$ be the number of vertices of an attached tree T excluding r. If v is a vertex of T furthest from the root r, then v is a pendent vertex. Let u be the vertex adjacent to v. We carry out a transformation on G in the following way, delete the edge uv and join v with r. This procedure results a graph G_1 displayed in Figure 4.2. If there exist a vertex in $T - v$ which is at a distance more than one from r, we can repeat the above process on G_1, and finally we get a graph \hat{G} shown in Figure 4.3.

![Figure 4.3: The graph \hat{G}](image)

Let G be a connected graph consisting of a connected subgraph H and a path P_k such that an end vertex of P_k is identified with a vertex r of H [see Figure 4.4]. If v is a vertex of P_k furthest from the root r, then v is a pendent vertex. Let w be the vertex adjacent to v. Suppose G_0 be the graph obtained from G by deleting the edge wv and joining v with r. Also, let H_0 be the graph obtained from G_0 by joining the edge uv [see Figure 4.4].

Lemma 4.1.7. If G and G_0 are the graphs as shown in Figure 4.4, then

$$P(G, \lambda) > P(G_0, \lambda), \text{ for all } \lambda \geq \lambda_1(G).$$
Chapter 4 On the spectral radius of a class of polycyclic graphs

\begin{center}
\begin{tikzpicture}
\node[shape=circle,draw=black] (a) at (1,0) {v};
\node[shape=circle,draw=black] (b) at (2,0) {w};
\node[shape=circle,draw=black] (c) at (3,0) {u};
\node[shape=circle,draw=black] (d) at (4,0) {r};
\node[shape=circle,draw=black] (e) at (5,0) {w};
\node[shape=circle,draw=black] (f) at (6,0) {v};
\node[shape=circle,draw=black] (g) at (7,0) {P_k};
\node[shape=circle,draw=black] (h) at (8,0) {H};
\node[shape=circle,draw=black] (i) at (9,0) {H_0};
\node[shape=circle,draw=black] (j) at (10,0) {P_{k-1}};
\node[shape=circle,draw=black] (k) at (11,0) {w};
\draw[thick] (a) -- (b);
\draw[thick] (b) -- (c);
\draw[thick] (c) -- (d);
\draw[thick] (d) -- (e);
\draw[thick] (e) -- (f);
\draw[thick] (f) -- (g);
\draw[thick] (g) -- (h);
\draw[thick] (h) -- (i);
\draw[thick] (i) -- (j);
\draw[thick] (j) -- (k);
\end{tikzpicture}
\end{center}

Figure 4.4: The graphs G, G_0 and H_0

In particular, we have $\lambda_1(G_0) > \lambda_1(G)$.

Proof. By Lemma 4.1.4, we have

$$P(G, \lambda) = \lambda P(G - v, \lambda) - P(G - w - v, \lambda),$$ \hfill (4.1.1)

$$P(G_0, \lambda) = \lambda P(G_0 - v, \lambda) - P(G_0 - r - v, \lambda).$$ \hfill (4.1.2)

We have

$$G - v \cong G_0 - v.$$

Also $G_0 - r - v$ is a proper spanning subgraph of $G - w - v$. By Lemma 4.1.5, we have

$$P(G_0 - r - v, \lambda) > P(G - w - v, \lambda), \text{ for all } \lambda \geq \lambda_1(G - w - v)$$
Section 4.2 The graph with maximal spectral radius

Since \(G - w - v \) is a proper subgraph of \(G - v \), we have \(\lambda_1(G) > \lambda_1(G - w - v) \).

Thus from (4.1.1) and (4.1.2), we have

\[
P(G, \lambda) > P(G_0, \lambda), \quad \text{for all } \lambda \geq \lambda_1(G - v).
\]

Since \(G - v \) is a proper subgraph of \(G \), therefore \(\lambda_1(G) > \lambda_1(G - v) \). Thus

\[
P(G, \lambda) > P(G_0, \lambda), \quad \text{for all } \lambda \geq \lambda_1(G).
\]

\[\blacksquare\]

Lemma 4.1.8. If \(G \) and \(H_0 \) are the graphs as shown in Figure 4.4, then

\[
\lambda_1(G) < \lambda_1(H_0).
\]

Proof. By Lemma 4.1.7, \(\lambda_1(G) < \lambda_1(H_0 - uv) \). Since \(H_0 - uv \) is a proper subgraph of \(H_0 \) the result follows.

\[\blacksquare\]

4.2 The graph with maximal spectral radius

![Figure 4.5: The graphs \(G^1(n, k) \) and \(G^1(n) \)](figure)

Theorem 4.2.1. If \(G \) is a graph in \(G(n, k) \) and \(G^1(n, k) \) is the graph as shown in Figure 4.5, then \(\lambda_1(G) \leq \lambda_1(G^1(n, k)) \); equality holds if and only if \(G \cong G^1(n, k) \).
Chapter 4 On the spectral radius of a class of polycyclic graphs

Proof. Let $G \in G(n, k)$ such that the spectral radius of G is as large as possible. Denote the vertex set of G by $V(G) = \{v_1, v_2, \ldots, v_n\}$ and the Perron vector of G by $x = (x_{v_1}, x_{v_2}, x_{v_3}, \ldots, x_{v_n})$, where x_{v_i} corresponds to the vertex $v_i, (1 \leq i \leq n)$. Then G have to satisfy the following facts.

Fact 1. Every path joining two cycles in G must have at least one edge from a cycle in G.

Proof. Otherwise there exist cycles C_1 and C_2 joined by a path $P = u_1u_2\ldots u_l$ of length $l - 1 (l \geq 2)$, where the common vertex of C_1 and P is u_1 and that of C_2 and P is u_l. Note that we can further choose the cycles C_1 and C_2 such that the path has no common edge with any cycle in G. Without loss of generality, assume that $x_{u_1} \geq x_{u_l}$. Let C_1 and C_2 be the equivalence classes of C_1 and C_2 in G, respectively.

If $C_2 = \{C_2\}$, then let $G^* = G - u_ly + u_1y$, where y is a neighbour of u_l on C_2. By Lemma 4.1.6, we have $\lambda_1(G^*) > \lambda_1(G)$. Also $G^* \in G(n, k)$, a contradiction.

If $|C_2| \geq 2$, and u_l is none of the two vertices which are common to all cycles in C_2, then let $G^* = G - u_ly + u_1y$, where y is a vertex on C_2 adjacent to u_l. By Lemma 4.1.6, we have $\lambda_1(G^*) > \lambda_1(G)$. Also $G^* \in G(n, k)$, a contradiction.

If $|C_2| \geq 2$, and u_l is one of the two vertices which are common to all cycles in C_2, then let $C_2' = \{C_1', C_2', \ldots, C_k'\}$ and u' be the other vertex which is common to all the cycles in C_2. Let $U = N(u_l) \cap (\cup_{i=1}^k V(C_i'))$ and $G^* = G - \sum_{y \in U} u_ly + \sum_{y \in U} u_1y$. Then by Lemma 4.1.6, we have $\lambda_1(G^*) > \lambda_1(G)$. If u_l is not a pendant vertex in G^*, then $G^* \notin G(n, k)$, a contradiction. Again, if u_l is a pendant vertex in G^*, then let $G^{**} = G^* + u_1u'$. But $\lambda_1(G^{**}) > \lambda_1(G^*) > \lambda_1(G)$, and $G^{**} \in G(n, k)$, a contradiction.
Thus the claim.

Fact 2. Any two cycles in G have a common vertex.

Proof. Suppose C_1 and C_2 are two cycles in G which have no common vertex. Then C_1 and C_2 are joined by a path $P = u_1 u_2 \ldots u_l$ of length $l - 1 (l \geq 2)$ which has some edge from a cycle in G. Note that we can further choose the cycles C_1 and C_2 such that all the edges in the path are in a single cycle C_3 in G. Suppose C_3 is related to neither C_1 nor C_2. Let u_1 be the vertex common to C_1, C_3 and u_l be the vertex common to C_2, C_3. Without loss of generality assume that $x_{u_1} \geq x_{u_l}$. Let $V_1 = N(u_l) \cap \{ \cup_{C \in C_2} V(C) \}$ and $G^* = G - \sum_{x \in V_1} u_l x + \sum_{x \in V_1} u_1 x$. By Lemma 4.1.6, $\lambda_1(G^*) > \lambda_1(G)$, and $G^* \in \mathcal{G}(n, k)$, a contradiction.

Suppose C_3 is related to C_2. Then C_1 is not related to both C_2 and C_3. Let v_1 and v_2 be the vertices which are common to all the cycles in C_2. Clearly u_1 is neither v_1 nor v_2.

If $x_{u_1} \geq x_{v_1}$, then let $V_1 = \{ N(v_1) \cap \{ \cup_{C \in C_2} V(C) \} \} - \{ N(u_1) \cup \{ u_1 \} \}$ and $G^* = G - \sum_{y \in V_1} v_1 y + \sum_{y \in V_1} u_1 y$. By Lemma 4.1.6, $\lambda_1(G^*) > \lambda_1(G)$.

If G^* is connected and v_1 is not a pendent vertex in G^*, then $G^* \in \mathcal{G}(n, k)$, a contradiction. If G^* is connected and v_1 is a pendent vertex in G^*, then let $G^{**} = G^* + u_1 v_1$. Now $\lambda_1(G^{**}) > \lambda_1(G)$ and $G^{**} \in \mathcal{G}(n, k)$, a contradiction. If G^* is disconnected, then let $G^{**} = G + u_1 v_1 + v_2 v_1$. But $\lambda_1(G^{**}) > \lambda_1(G)$ and $G^{**} \in \mathcal{G}(n, k)$, a contradiction.

If $x_{u_1} < x_{v_1}$, then let $U_1 = N(u_1) \cap \{ \cup_{C \in C_1} V(C) \}$ and $G^* = G - \sum_{y \in U_1} u_1 y + \sum_{y \in U_1} v_1 y$. Now $\lambda_1(G^*) > \lambda_1(G)$ and $G^* \in \mathcal{G}(n, k)$, a contradiction.

Thus any two cycles in G have a common vertex.

Fact 3. Any two cycles in G have two common vertices.
Proof. If possible, let C_1 and C_2 be two cycles in G having exactly one vertex u in common. Since any two cycles in G have a common vertex, therefore u must be a vertex which is common to all cycles in $\overline{C_1}$ and $\overline{C_2}$, otherwise C_1 and C_2 will have two vertices in common. Let v be the other vertex which is common to all cycles in $\overline{C_1}$ and w be the other vertex which is common to all cycles in $\overline{C_2}$. Let $V_1 = \{N(v) \cap \cup_{C \in C_1} V(C)\} - \{u\}$. Without loss of generality assume that $x_w \geq x_v$, and consider $G^* = G - \sum_{y \in V_1} vy + \sum_{y \in V_1} wy$. Then $\lambda_1(G^*) > \lambda_1(G)$. If G^* is connected and v is not a pendent vertex in G^*, then $G^* \in \mathcal{G}(n, k)$, a contradiction. If G^* is connected and v is a pendent vertex in G^*, then let $G^{**} = G^* + vw$. But $\lambda_1(G^{**}) > \lambda_1(G)$ and $G^{**} \in \mathcal{G}(n, k)$, a contradiction. If G^* is disconnected, then let $G^{**} = G^* + uv + vw$. Again $\lambda_1(G^{**}) > \lambda_1(G)$ and $G^{**} \in \mathcal{G}(n, k)$, a contradiction. Therefore any two cycles in G must have two common vertices.

By u_0 and v_0 we denote the two vertices of G which are common to all cycles in G.

Fact 4. There is only one equivalence class in G.

Proof. If possible let there exist two equivalence classes $\overline{C_1}$ and $\overline{C_2}$ in G. Let $C_1 \in \overline{C_1}$ and $C_2 \in \overline{C_2}$. By Fact 3, there exist two vertices u_0 and v_0 in G which are common to both C_1 and C_2. Now the cycle C_3 in G formed by the $u_0 - v_0$ paths (one lies on the cycle C_1 (but not on C_2) and other lies on the cycle C_2) is in both the equivalence classes $\overline{C_1}$ and $\overline{C_2}$, a contradiction.

Fact 5. Any tree of the graph G is attached to a common vertex of all cycles.

Proof. If possible let there exist a tree T attached to a vertex u on a cycle C of G. Let y be the neighbour of u in T. If $x_{vu} \geq x_u$, then let $G^* = G - uy + v_0y$.

57
If \(x_{v_0} < x_u \), then let \(C_1 \) be a cycle in \(G \) containing \(v_0, u, u_0 \); \(V_0 = \{ N(v_0) \cap \{ \cup_{C \in C_1} V(C) \} \} - V(C_1) \) and \(G^* = G - \sum_{y \in V_0} v_0 y + \sum_{y \in V_0} u y \). In either case by Lemma 4.1.6, \(\lambda_1(G^*) > \lambda_1(G) \) and \(G^* \in \mathcal{G}(n,k) \), a contradiction.

Without loss of generality we assume that all the trees are attached at \(v_0 \).

Fact 6. All the trees attached at \(v_0 \) are paths of length 1.

Proof. First we show that the trees attached at \(v_0 \) are paths.

If possible let \(T \) be a tree attached at \(v_0 \) which is not a path. Let \(u \) be a vertex of degree \(r \geq 3 \) which is furthest from \(v_0 \). If \(x_{v_0} \geq x_u \), then let \(y_1, y_2, \ldots, y_{r-2} \) be \(r-2 \) neighbours of \(u \) in \(T \) and none of \(y_i \)’s be in the \(v_0 - u \) path and let \(G^* = G - \sum_{i=1}^{r-2} u y_i + \sum_{i=1}^{r-2} v_0 y_i \). If \(x_{v_0} < x_u \), then let \(G^* = G - v_0 w + uw \), where \(w \) is a vertex on a cycle and is adjacent to \(v_0 \). In either case, by Lemma 4.1.6, \(\lambda_1(G^*) > \lambda_1(G) \) and \(G^* \in \mathcal{G}(n,k) \), a contradiction.

Thus all the trees attached at \(v_0 \) are paths.

Now by Lemma 4.1.8, all the trees attached at \(v_0 \) are paths of length 1 (i.e. there are \(k \)-pendent vertices attached at \(v_0 \)).

Fact 7. Every vertex of \(G \) must be adjacent to \(v_0 \).

Proof. Clearly \(u_0 \) is adjacent to \(v_0 \). Otherwise, let \(G^* = G + u_0 v_0 \). Then \(\lambda_1(G^*) > \lambda_1(G) \) and \(G^* \in \mathcal{G}(n,k) \), a contradiction. If possible let \(v_k \) be a vertex in \(G \) which is not adjacent to \(v_0 \). Let \(v_0 v_1 \ldots v_k \) be the path from \(v_0 \) to \(v_k \) not containing the vertex \(u_0 \), where \(k \geq 2 \). If \(x_{v_0} \geq x_{v_1} \), then let \(G^* = G - v_1 v_2 + v_0 v_2 \), and by Lemma 4.1.6, \(\lambda_1(G^*) > \lambda_1(G) \). Consider the graph \(G^{**} = G^* + v_1 u_0 \). Then we have \(\lambda_1(G^{**}) > \lambda_1(G^*) > \lambda_1(G) \), and \(G^{**} \in \mathcal{G}(n,k) \), a contradiction.

And if \(x_{v_0} < x_{v_1} \), then let \(U = N(v_0) - \{ v_1, u_0 \} \) and \(G^* = G - \sum_{v \in U} v_0 v + \sum_{v \in U} v_1 v \). By Lemma 4.1.6, \(\lambda_1(G^*) > \lambda_1(G) \) and \(G^* \in \mathcal{G}(n,k) \), a contradiction.
Thus every vertex (other than v_0) of G is adjacent to v_0.

Combining all the above facts we have, $G \cong G^1(n, k)$.

Let $G(n)$ be the class of all connected graphs on n vertices in which for each class C in G, there exist two vertices in G which are common to all the cycles in C. If $G^1(n)$ denote the graph shown in Figure 4.5, then we have the following.

Corollary 4.2.2. If G is a graph in $G(n)$, then $\lambda_1(G) \leq \lambda_1(G^1(n))$; equality holds if and only if $G \cong G^1(n)$.