TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Introduction to grid 1
 1.1.1 History 2
 1.1.2 Types of Grids 3
 1.1.3 Design considerations and variations 4
 1.1.4 Open Grid Forum 6
1.2 Importance of grid computing 7
1.3 Requirements for grid 8
 1.3.1 Hardware requirements 8
 1.3.2 Software requirements 9
1.4 The layered grid architecture 10
 1.4.1 Fabric layer 10
 1.4.2 Connectivity layer 11
 1.4.3 Resource layer 11
 1.4.4 Collective layer 11
 1.4.5 Application layer 11
1.5 Grid applications 12
1.6 Matchmaking in Grid
1.7 Challenges in matchmaking
1.8 Motivation of the work
1.9 Problem statement
1.10 Contribution
1.11 Organization of the thesis

2. REVIEW OF LITERATURE
2.1 Introduction
2.2 Categorization of different matchmaking approaches
2.3 Classads matchmaking
 2.3.1 Condor matchmaking
 2.3.2 Data aware scheduler (Stork)
 2.3.3 Tree based matching
 2.3.4 Set matching
2.4 Semantic based matchmaking
 2.4.1 Matchmaking based on semantic distances
 2.4.2 Two step matching algorithms
 2.4.3 Meta Data semantic matching
2.5 Ontology based matching
2.6 Dynamic resource matching
 2.6.1 Online resource matching
 2.6.2 GRAD Solve RPC system
2.7 Decentralized matchmaking
 2.7.1 Matchmaking Engine Overlay (MEO)
 2.7.2 Market oriented grid
 2.7.3 Tree based matching
 2.7.4 Bid based matching
 2.7.5 Fair share scheduling
 2.7.6 Backfilling
3. THE THREE DIMENSIONS IN MATCHMAKING PROCESS

3.1 Introduction 39
3.2 Three dimensional parameters 40
 3.2.1 Static parameters 41
 3.2.2 Dynamic parameters 42
 3.2.3 Behavioral parameters 43
3.3 Conclusion 46

4. ARCHITECTURAL DESIGN OF NOVEL THREE DIMENSIONAL MATCHMAKING MODEL (TDMM)

4.1 Introduction 47
4.2 Proposed Three Dimensional Matchmaking Model (TDMM) 48
 4.2.1 Grid Manager 41
 4.2.1.1 Job handler 49
 4.2.1.2 Resource handler 57
 4.2.1.3 Accounting facilitator 64
 4.2.1.4 Three dimensional matchmaking engine 66
 4.2.2 Resource Monitor 75
 4.2.2.1 Resource analyst 76
 4.2.2.2 Knowledge unit 78
4.3 Interaction diagram 79
4.4 Analyzing the TDMM behavior for various grid scenarios 80
4.5 Abstract model of TDMM for various grid scenarios 82
4.6 Conclusion 83

5. EXPERIMENTAL RESULTS
5.1 Introduction 85
5.2 Performance metrics 85
5.3 Experimental results and discussions 86
5.4 Conclusion 101

6. ANALYSIS OF THREE DIMENSIONAL MATCHMAKING MODEL (TDMM)
6.1 Introduction 102
6.2 Lemma 1 102
6.3 Lemma 2 103
6.4 Hypothesis (H1& H2) 105
6.5 Analysis of Time Complexity 107
6.6 Conclusion 109

7. DUAL QUEUE THREE DIMENSIONAL MATCHMAKING MODEL (DQTDMM)
7.1 Introduction 110
7.2 Dual Queue Three Dimensional Matchmaking Model (DQTDMM) 111
7.3 Analysis of Dual Queue Model (DQM) 117
7.4 Comparative analysis of TDMM and DQTDMM 120
7.5 Conclusion 124
8. SUMMARY AND FUTURE SCOPE

8.1 Conclusion 125
8.2 Future Scope 128

APPENDICES

Appendix 1 Case study for matchmaking process using assignment and correlation method 129

REFERENCES 144
LIST OF PUBLICATIONS 161
CURRICULUM VITAE 163
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Matchmaking approaches</td>
<td>18</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Parameter names and their notations</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Flags and the message types</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Job table</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Job status</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Rank_list</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Resource table</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Resource status</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Account table</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Weight values of static parameters</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Resource repository table</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Behavior parameter table</td>
<td>79</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Simulation parameters</td>
<td>86</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Time taken to find resource for a job in different attempts</td>
<td>106</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Rank List Table</td>
<td>113</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Resource Information Table</td>
<td>114</td>
</tr>
<tr>
<td>Table A 1.1</td>
<td>DAS3 clusters with attributes</td>
<td>132</td>
</tr>
<tr>
<td>Table A 1.2</td>
<td>Resources from DAS 3 and its parameter values</td>
<td>133</td>
</tr>
<tr>
<td>Table A 1.3</td>
<td>The static parameters, their weight value and the resource</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>assigned</td>
<td></td>
</tr>
<tr>
<td>Table A 1.4</td>
<td>Resource and the rank for static parameters</td>
<td>139</td>
</tr>
<tr>
<td>Table A 1.5</td>
<td>The resource with the correlated values for dynamic parameters</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table A 1.6</td>
<td>Resource and the rank for dynamic parameters</td>
<td>141</td>
</tr>
</tbody>
</table>
Table A 1.7 The resource with the correlated values for behavioral parameters
Table A 1.8 Resource and the rank for behavioral parameters
Table A 1.9 Final rank_list
LIST OF FIGURES

Figure 1.1	A typical grid environment	6
Figure 1.2	Layered Grid architecture	10
Figure 4.1	Three Dimensional Matchmaking Model \((TDMM)\)	48
Figure 4.2	User_registration message format	49
Figure 4.3	User_ack message format	50
Figure 4.4	Job_submission message format	51
Figure 4.5	Job_ack message format	51
Figure 4.6	Job_description message format	54
Figure 4.7	Status_request message format	54
Figure 4.8	Status_response message format	55
Figure 4.9	Fee_request message format	56
Figure 4.10	Fee_response message format	56
Figure 4.11	Serviceprovider_registration message format	57
Figure 4.12	Serviceprovider_ack message format	58
Figure 4.13	Resource_registration message format	58
Figure 4.14	Resource_registration_ack message format	59
Figure 4.15	Resource_submission message format	59
Figure 4.16	Success_rate_update message format	62
Figure 4.17	Recovery_time message format	63
Figure 4.18	Fee_calculation_request message format	64
Figure 4.19	Assignment values	69
Figure 4.20	Hit_rate_update message format	74
Figure 4.21	Failure_rate_update message format	75
Figure 4.22	The interaction between different components	
in the TDMM

Figure 4.23 Abstract model of TDMM for case 1

Figure 4.24 Abstract model of TDMM for case 2

Figure 5.1 Successful jobs (%) Vs Input load (%) for CONDOR, FCONDOR and TDMM

Figure 5.2 Average response time Vs Input load (%) for TDMM, CONDOR and FCONDOR

Figure 5.3 Average response time Vs Input load (%) for One dimensional, Two dimensional and Three dimensional parameters.

Figure 5.4 Successful jobs (%) Vs Input load (%) for One dimensional, Two dimensional and Three dimensional parameters.

Figure 5.5 a Successful jobs (%) Vs % of dynamic resources (Ingress 30% and Egress 70%) for CONDOR, FCONDOR and TDMM

Figure 5.5 b Successful jobs (%) Vs % of dynamic resources (Ingress 50% and Egress 50%) for CONDOR, FCONDOR and TDMM

Figure 5.5 c Successful jobs (%) Vs % of dynamic resources (Ingress 70% and Egress 30%) for CONDOR, FCONDOR and TDMM

Figure 5.6 a Successful jobs (%) Vs % of dynamic resources (Ingress 30% and Egress 70%) for New and Mature jobs

Figure 5.6 b Successful jobs (%) Vs % of dynamic resources (Ingress 50% and Egress 50%) for New and Mature jobs
Figure 5.6 c Successful jobs (%) Vs % of dynamic resources (Ingress 70% and Egress 30%) for New and Mature jobs 96
Figure 5.7 Average response time Vs Resource increase in the resource pool (%) 97
Figure 5.8 Successful jobs (%) Vs Input load (%) for various TTL values 98
Figure 5.9 Number of failed jobs (%) Vs Input load (%) for Low and High resource ingress 99
Figure 5.10 Average response time Vs Input load (%) with Job categorization and without Job categorization 100
Figure 7.1 Dual Queue Three Dimensional Matchmaking Model (DQTDMM) 111
Figure 7.2 Interactions between the components in the Dual Queue Model (DQM) 112
Figure 7.3 LPP graph 117
Figure 7.4 System with single sink 118
Figure 7.5 System with Dual sink 118
Figure 7.6 Successful jobs (%) Vs Input load (%) for CONDOR, FCONDOR, TDMM and DQTDMM 121
Figure 7.7 Average response time Vs Input load (%) for DQTDMM and TDMM 122
Figure 7.8 Comparative analysis of average response time for one dimensional parameters, three dimensional parameters with job categorization and three dimensional parameters with job categorization and dual queue for various input loads. 123
Figure A 1.1 DAS-3: five clusters, one system 130
Figure A 1.2 A match Matrix 134
LIST OF SYMBOLS AND ABBREVIATIONS

\(w \) Average waiting time of a job in a queue
\(c_j \) Capacity of resource \(j \)
\(D_l \) Deadline
\(D_r \) Dedication rate
\(E_s \) Economic state
\(E \) Efficiency
\(E_i \) Expected sequence
\(e_{r_i}^n \) Energy consumption rate for the \(n \)-th job of the \(i \)-th user
\(F_r \) Failure rate
\(D_a \) Hard disk availability
\(H_r \) Hit rate
\(M_s \) Mature job queue
\(\lambda \) Mean arrival rate
\(\mu \) Mean service rate
\(R_m \) Memory capacity
\(N_e \) New job queue
\(k \) Number of elements in a set
\(U \) Number of jobs a resource successfully completes
\(F \) Number of occurrences of a resource in the \(rank_list \)
\(P \) Number of occurrences of the resources in the three dimensional matchmaking engine
\(N_n(E) \) Number of times the event \(E \) occurs in \(n \) trials
\(Q \) number of times the resource is allocated for a job.
R Number of times the resource is rejected in the three dimensional matchmaking engine

O_l Observed sequence

p_{joff} Off Peak time price

U_l^j Optimal payment

p_{jon} Peak time price

$P(E)$ Probability of occurrence of an event E

R_t Recovery time

R_{co} Resource cost

R_c Resource CPU type

R_l Resource location

R_n Resource name

R_o Resource OS

R_r Resource type

q_{in} Size of the n-th job of the i-th user

S_r Success rate

T Test statistic

Δt_1 Time interval at which the Hit rate and the Recovery time are calculated and updated in the Knowledge unit.

Δt Time interval at which the dynamic parameters are updated in the resource pool.

ACO Ant Colony Optimization

ACS Access Control Systems

CFP Call for Proposal

DAS-3 The Distributed ASCI Supercomputer 3

DQA Dual Queue Algorithm

DQM Dual Queue Model

DQTDMM Dual Queue Three Dimensional Matchmaking Model

FCFS First Come First Serve
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO</td>
<td>First In First Out</td>
</tr>
<tr>
<td>GARA</td>
<td>Globus Architecture for Reservation and Allocation</td>
</tr>
<tr>
<td>MAS</td>
<td>Multi Agent System</td>
</tr>
<tr>
<td>MEO</td>
<td>Matchmaking Engine Overlay</td>
</tr>
<tr>
<td>MIS</td>
<td>Market Information Services</td>
</tr>
<tr>
<td>OGF</td>
<td>Open Grid Forum</td>
</tr>
<tr>
<td>RSR</td>
<td>Resource State Repository</td>
</tr>
<tr>
<td>RWA</td>
<td>Routing and Wavelength Assignment</td>
</tr>
<tr>
<td>TDMM</td>
<td>Three Dimensional Matchmaking Model</td>
</tr>
<tr>
<td>TTL</td>
<td>Time To Live</td>
</tr>
<tr>
<td>VO</td>
<td>Virtual Organizations</td>
</tr>
</tbody>
</table>