Table 2.1 Methods employed for genetic transformation of monocots 7
Table 2.2 Micro-propagation of bamboo species 28-46
Table 2.3 Somatic embryogenesis in different bamboo species 47-52
Table 2.4 Genetic transformation in different bamboo species 55
Table 3.1 Primer sequences for tlp gene used for cloning and expression studies 74
Table 4.1 Effect of different concentrations of cefotaxime and carbenicillin on Agrobacterium growth (cells/ml) after 15 days of incubation at 28°C in dark. The values represent mean ± standard error 95
Table 4.2 Effect of optical densities of Agrobacterium tumefaciens culture on the bacterial growth and explant response when transformed with different strains 98
Table 4.3 Effect of population densities (cells/ml) on Agrobacterium infection of D. hamiltonii somatic embryos at 25 ± 2°C under culture lab conditions in dark 100
Table 4.4 Effect of Agrobacterium infection methods on the response of somatic embryos after different durations of co-cultivation on MSA under culture lab conditions in dark 101
Table 4.5 Effect of Agrobacterium infection methods on the total polyphenol content of D. hamiltonii somatic embryos after incubation for different durations on MSA under culture lab conditions in dark 104
Table 4.6 Effect of Agrobacterium infection methods on the polyphenol oxidase (PPO) activity in D. hamiltonii somatic embryos after incubation for different durations on MSA under culture lab conditions in dark 105
Table 4.7A Suppression of necrosis (necrotic spots per somatic embryo) by 5, 10, 15, 20 and 25 min of vacuum infiltration with (a) PVP (b) activated charcoal (c) ascorbic acid (d) cysteine-HCl after 12 h of incubation on MSA. Values represent the mean of three replicates ± standard error 107
Table 4.7B Suppression of necrosis (necrotic spots per somatic embryo) by 5, 10, 15, 20 and 25 min of vacuum infiltration with (a) PVP (b) activated charcoal (c) ascorbic acid (d) cysteine-HCl after 24 h of incubation on MSA. Values represent the mean of three replicates ± standard error 108
Table 4.7 Suppression of necrosis (necrotic spots per somatic embryo) by 5, 10, 15, 20 and 25 min of vacuum infiltration with (a) PVP (b) activated charcoal (c) ascorbic acid (d) cysteine-HCl after 48 h of incubation on MSA. Values represent the mean of three replicates ± standard error.

Table 4.8 GC-MS profile of the major components of the surface-waxes of *D. hamiltonii* somatic embryos.

Table 4.9 Antimicrobial (bacterial and fungal) activity of the surface-wax of *D. hamiltonii* somatic embryos.

Table 4.10 Effect of the presence of different concentrations of acetylsyringone (AS) in the *Agrobacterium* culture on transient transformation efficiency (TTE).

Table 4.11 Transient GUS expression percentage (%) in somatic embryos in response to different concentrations of acetylsyringone (AS) in co-cultivation media.

Table 4.12 Effect of the presence of different plant growth regulators (PGRs) in the co-cultivation medium on transient GUS expression (TTE) and somatic embryo proliferation.

Table 4.13 Effect of different co-cultivation conditions on transient transformation efficiency (TTE) of somatic embryos of *D. hamiltonii*.

Table 4.14 Transient transformation efficiency (TTE) of *D. hamiltonii* somatic embryos bombarded with plasmid DNA harbouring *gus* and *nptII*.

Table 4.15 Effect of rupture disk pressures (900, 1100 and 1350 psi) and number of bombardments (1, 2 and 3) on transient transformation efficiency (TTE) of *D. hamiltonii* somatic embryos after 2 and 30 days of bombardment.

Table 4.16 Effect of gap distance and target distance on transient transformation efficiency (TTE) of *D. hamiltonii* somatic embryos.

Table 4.17 Effect of plasmid DNA concentration on transient transformation efficiency (TTE) of somatic embryos after 2 days of bombardment.

Table 4.18 Transient transformation efficiency (TTE) of *D. hamiltonii* somatic embryos bombarded with pBI121 harbouring *gus* gene using optimized parameters.

Table 4.19 Effect of 24 and 48 h of low temperature stress on the biochemical parameters of not-bombarded control (CNB) and *tlp*-transgenics and the changes on their transfer to ambient conditions (25°C) after 48 h of stress.
Table 4.20 Up-regulation and down-regulation of proteins in transgenic albino in comparison to normal green plant