Contents

<table>
<thead>
<tr>
<th>Index No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certicate</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>iv-vi</td>
<td></td>
</tr>
<tr>
<td>List of abbreviations used</td>
<td>vii</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1

Introduction and review of literature 1-45

1.1 Introduction and review of literature 2
1.2 (Thia)calix[4]arenes based fluorogenic receptors 3
1.3 Resonance energy transfer based fluorescent probes 14
1.3.1 Fluorescence resonance energy transfer (FRET) based fluorescent probes 15
1.3.2 Through bond energy transfer (TBET) based fluorescent cassettes 28
1.4 Reaction based fluorescent probes 31
1.5 Observations drawn from literature 36

Chapter 2

Thiacalix[4]arene based fluorogenic receptors 46-71

2.1 Introduction 47
2.2 Results and discussion 49
2.2.1 Rhodamine appended thiacalix[4]arene of 1,3-\textit{alternate} conformation for nanomolar detection of Hg$^{2+}$ ions 49
2.2.2 Thiacalix[4]arene-cinnamaldehyde derivative: ICT-induced preferential nanomolar detection of Ag$^+$ among different transition metal ions 56
2.3 Experimental 63
2.3.1 General methods and instrumentations 63
2.3.1.1 Physical measurements 63
2.3.1.2 UV-vis and fluorescence titrations 64
2.3.1.3 Stoichiometry of complexes 64
2.3.1.4 Binding constants of complexes 65
2.3.1.5 1H NMR titrations 65
2.3.1.6 Fluorescence quantum yield 65
2.3.2 Synthesis of thiacalix[4]arene derivatives 66
Chapter 3
Molecular switches based on thiacalix[4]arene 72-97

3.1 Introduction 73
3.2 Results and discussion 74
3.2.1 Allosterically synchronized Hg$^{2+}$/Li$^+$ switch based on thiacalix[4]crown 74
3.2.2 A Cu$^{2+}$/Li$^+$ ions switchable allosteric system based on thiacalix[4]crown 81
3.2.3 Optical chemosensor for Fe$^{3+}$, Li$^+$ and cysteine: A Fe$^{3+}$/Li$^+$ ions synchronized allosteric regulations 86
3.3 Experimental 93
3.3.1 General methods and instrumentations 93
3.3.2 Synthesis of thiacalix[4]arene derivatives 93

Chapter 4
Resonance energy transfer based fluorescent probes 98-120

4.1 Introduction 99
4.2 Results and discussion 101
4.2.1 Fluorescence resonance energy transfer based probe for Fe$^{2+}$ ions 101
4.2.2 Through bond energy transfer based fluorogenic probe for Hg$^{2+}$ ions 106
4.3 Experimental 114
4.3.1 General methods and instrumentations 114
4.3.1.1 Procedure for fluorescence imaging 114
4.3.2 Synthesis of compounds 1, 3, 4, 6, 9, 10, 11 and 13 115

Chapter 5
Reaction-based fluorescent probes 121-150

5.1 Introduction 122
5.2 Results and discussion 124
5.2.1 Rhodamine based fluorescence turn-on chemodosimeter for nanomolar detection of Cu$^{2+}$ ions 124
5.2.2 Reaction based fluorescent probe for detection and visualization of Pd$^{2+}$ ions 132
5.2.3 Charge transfer assisted fluorescent probe for selective detection of hydrogen peroxide 139
5.3 Experimental 147
5.3.1 General methods and instrumentations 147
5.3.1.1 Procedure for fluorescence imaging 147

5.3.2 Synthesis of compounds 2, 6, 8 and 11 147

Chapter 6

Naphthalimide based chemosensor for Zn$^{2+}$, pyrophosphate and H$_2$O$_2$: Sequential logic operations at the molecular level 151-164

<table>
<thead>
<tr>
<th>6.1</th>
<th>Introduction</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Results and discussion</td>
<td>154</td>
</tr>
<tr>
<td>6.3</td>
<td>Experimental</td>
<td>162</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General methods and instrumentations</td>
<td>162</td>
</tr>
<tr>
<td>6.3.1.1</td>
<td>Procedure for fluorescence imaging</td>
<td>162</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Synthesis of compound 3</td>
<td>162</td>
</tr>
</tbody>
</table>

List of Publications 165-166

Summary 167-176