APPENDICES

A. Future scope:

The work presented in the thesis suggests several future areas of research especially for the problems in nanofluid. In the present study we have not taken into consideration the unsteady flow, radiation heat transfer and variable Schmidt number. Also the influence of variable thermal conductivity and heat generation absorption are ignored in the present study. There is a wide scope in this respect. Moreover, for future work, the fluids flow problems can be extended to predict more accurately the effect of variable viscosity on the flow, heat and mass transfer characteristics by defining the fluid viscosity as the inversely quadratic function of temperature.

\[
\frac{1}{\mu} = \frac{1}{\mu_\infty} \left[1 + \gamma_1 (T - T_\infty) + \gamma_2 (T - T_\infty)^2 \right]
\]

i.e.

\[
\frac{1}{\mu} = \frac{1}{\mu_\infty} \left[1 - \theta / \theta_t + \theta^2 / \theta_v \right]
\]

where \(\theta = (T - T_\infty)/(T_v - T_\infty) \), \(\theta_t = -1/\gamma_1(T_w - T_\infty) \), \(\theta_v = 1/\gamma_2(T_w - T_\infty)^2 \), and \(\gamma_1 \) and \(\gamma_2 \) are constants.
B. List of paper published/accepted:

Acceptance Letter:

From: <journals@submission.begellhouse.com>
Date: Fri, Oct 20, 2017 at 7:54 PM
Subject: Article FMR-19500. The status has been changed from ‘READY_FOR_PRODUCTION’ to ‘REQUEST_CHANGES_FOR_PRODUCTION’

Dear Author

Your article for FMR has been accepted and is ready for production.

With kind regards,

Begell House Production

C. Lists of conference/seminar attended:

256