LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Comparative vertical sequence in some gravity stratified sheet complexes.</td>
</tr>
<tr>
<td>3.</td>
<td>Composition and physical properties of garnet from eclogite gabbro.</td>
</tr>
<tr>
<td>4.</td>
<td>Composition and physical properties of garnet from garnet-pyroxene rock.</td>
</tr>
<tr>
<td>5.</td>
<td>Composition and physical properties of garnet from Anorthosite.</td>
</tr>
<tr>
<td>6.</td>
<td>Determination of anorthite content of plagioclases by various methods for Sittampundi rocks.</td>
</tr>
<tr>
<td>7.</td>
<td>Twinning laws of plagioclase feldspars in the Sittampundi rocks.</td>
</tr>
<tr>
<td>8.</td>
<td>Structural account of analysed amphibole from Sittampundi rocks.</td>
</tr>
<tr>
<td>9.</td>
<td>Composition of anthophyllite from anorthosite rock.</td>
</tr>
<tr>
<td>10.</td>
<td>Composition of chromite from chromitite.</td>
</tr>
<tr>
<td>11.</td>
<td>Chemical analysis of calcite marbles from Sittampundi.</td>
</tr>
<tr>
<td>12.</td>
<td>Chemical analysis of quartz-magnetite rocks of Sittampundi.</td>
</tr>
<tr>
<td>13.</td>
<td>Approximate modes of rocks from the Sittampundi complex.</td>
</tr>
</tbody>
</table>
14. Chemical analyses of garnetiferous granulites from Sittampundi.
15. Chemical analyses of pyroxene granulites from Sittampundi.
17. Garnet and the end members.
18. Calculated values of refractive indices and specific gravities of the hypothetical garnet end members.
19. Chemical composition with physical and optical properties of garnet from Sittampundi complex.
20. Composition and physical properties of grossularite rich garnet.
 B Composition and physical properties of pyrope rich garnet.
 C Composition and physical properties of pyrope rich garnet.
21. Refractive indices of ten garnets with estimated compositions of associated plagioclase and orthopyroxene from Sittampundi complex.
22. Analyses of garnetiferous rocks of Sittampundi.
23. Chemical analyses of garnetiferous granulites from Sittampundi.
24. Chemical analyses along with structural formula and mineral formula of garnets from Sittampundi rocks.

vi.

LIST OF FIGURES.

FIGURE NO.

1. Location map of Sittampundi.

2. Shows interpretation of form and structure of the complex.

3. Showing corundum crystals in Meta-anorthosite.

5. Geological map of Sankaridurg and Sittampundi.

6. Geological map of anorthosite Complex in Namakkal – Tiruchengode area, Tamil Nadu, India.

7. Shows fold interference pattern.

8. Geological map of the area in and around Tiruchengode, Salem District, Tamil Nadu.

9. Plots of Niggli mg against Ba ppm, cuppm, Sr ppm, Niggli si, ti, w (oxidation ratio) c and alk and also against normative An% for the Sittampundi rocks.

10. Plots of Niggli mg against Ni and cr contents in ppm showing the effect of normalising the cr and Ni to allow for the differing proportion of mafic minerals in different anorthosite and granulite samples.

11. Plots of Sr ppm against Niggli c and normative An% Sr normalised to 50% normative plagioclase plotted against normative An%.
12. Geomorphological map of Sittampundi with drainage pattern.

14. AFM diagram showing plots of Quartzites and marbles of the area under investigation.

15. Micrograph of garnetiferous granulite.

16. Micrograph of garnet coronas in garnetiferous granulite.

17. Determinative charts for garnets.

18. Micrograph of garnet replacing anorthite.

19. Micrograph of garnet coronas in eclogite.

20. Micrograph of a garnet corona in eclogite.

21. Plots of Cr and Ni ppm against percent normative olivine, normative clinopyroxene, and modal amphibole in the anorthosites and granulites.

22. SiO₂ wt. per cent against FeO + Fe₂O₃ wt. per cent for the Fiskenaesset and Sittampundi anorthosites.

LIST OF PLATES

PLATE I

Figure 1. Fine foliation lamellae is observed in meta-anorthosite, near Sittampundi.

Figure 2. Garnet crystals of size varying from 2 mm to 25 mm occur in meta-anorthosite, near Pamandampalayam.

PLATE II

Figure 1. Chromitite layers ranging in thickness from a few inches up to as much as 10 ft.

Figure 2. Chromitite bands occur as conformable layers within meta-anorthosite near Pamandampalayam.

PLATE III

Figure 1. Layers of garnetiferous granulite ranging in thickness from 5 ft. to 50 ft. are found within the meta-anorthositic gabbros near Chinnampalayam.

Figure 2. Garnetiferous granulite resists weathering and forms low ridges near Marappanpalayam.

Figure 3. A small knoll of pyroxene granulite near Marappanpalayam.

Figure 4. Garnetiferous granulite with pimples of garnets occurs structurally conformable layers to the meta-anorthositic gabbros near Chinnampalayam.

PLATE IV

Figure 1. Incipient development of corona around a garnet crystal. parallel nicols.

Figure 2. Profuse development of vermicular intergrowth of hornblende and plagioclase due to these breaking up of garnet. parallel nicols.
Figure 3. Hornblende and plagioclase simplectites around garnet. crossed nicols.

Figure 4. Breaking up of garnet with the liberations of iron in the form of opaque ores which are zonally distributed. parallel nicols.

PLATE V
Figure 1. Pyroxene granulite hillock near Karattupalayam.

Figure 2. Clinopyroxene is in contact with plagioclase indicating earlier assemblage of clinopyroxene with plagioclase. crossed nicols.

PLATE VI
Figure 1. Outcrop of meta-anorthositic gabbroic rock near Pamandampalayam.

Figure 2. A pit working for corundum near Chinnampalayam.

PLATE VII
Figure 1. Preferred orientation is observed in the hornblende-plagioclase rock. crossed nicols.

Figure 2. Edenite occurs as acicular and bladed crystals with their longer axis oriented in their plane of layering. parallel nicols.

Figure 3. Garnet occurs occasionally replacing anorthite. parallel nicols.

PLATE VIII
Figure 1. Granular texture produced by hornblende and plagioclase contact. crossed nicols.
Figure 2. Corundum forms thin strips along with plagioclase grain boundaries. parallel nicols.

Figure 3. Triple junction textures mainly involve plagioclase, hornblende and clinozoisite. crossed nicols.

PLATE IX

Figure 1. Steeply dipping layers of chromitite from a well-cutting near Pamandampalayam.

Figure 2. Chromitite layers are parallel to the general layering of meta-anorthositic gabbros south of Sittampundi.

Figure 3. Euhedral to subhedral crystals of chromite is distributed in the ground mass of pyriboles. parallel nicols.