LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>68</td>
</tr>
</tbody>
</table>

I Simplistic classification of migmatisation process.
LIST OF FIGURES

1. Location map of Elampillai 2
2. Figure showing transition zone 6
3. Tectonic map of south Indian SHIELD 9
4. The map shows permanent geomagnetic observation stations magnetometer array station (Jayakumar et al. 1981, 1984) 12
5. Figure showing principal iron ore Deposits of India 14
6. Location map of iron ore occurrences in and around Salem district, Tamil Nadu 18
7. Geological map of Elampillai 21
8. Area under investigation with important localities 26
9. Figure showing geomorphology of the study area 28
10. Figure showing Northern, Central and Southern division of the study area 30
11. Drainage map around Elampillai 35
12. Ternary AFM diagram with fields for granodiorite to tonalitic composition of charnockite 52
13. Ternary Normative plot of Ab-An-Or for charnockite 53
14. Plots of OPX in charnockite-metamorphic origin 54
15. Figure showing Deep main faults by Grady (1971) 59
16. Cross section of Borehole showing peridotite below dunite and acicular calcite in the contact zone between dunite and peridotite. 64
17. a. Figure showing major Lineaments and the intrusive complexes 71
b. Lineaments map of study area 72
18. Figure showing geological map of Kanjamalai 74
19. Figure showing schematic representation of folding in BIFs in Kanjamalai 80
20. Figure showing schematic representation of structure in Kanjamalai and the formation of structural Domes and Basins Due to super posed folds. 81

<table>
<thead>
<tr>
<th>PLATES NO.</th>
<th>PLATES</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Fig:1</td>
<td>Panoramic view of Eastern portion of Kanjamalai Location: Chandanakarankadu.</td>
</tr>
<tr>
<td></td>
<td>Fig:2</td>
<td>Panoramic view of Southern portion of Kuttikaradu Location: Perumampatti.</td>
</tr>
<tr>
<td>II</td>
<td>Fig:1</td>
<td>The photograph showing the unconformable and cross cutting microcline bearing granites near Vattamuthampatti.</td>
</tr>
<tr>
<td></td>
<td>Fig:2</td>
<td>The mural joints developed in the microcline bearing granites at Vattamuthampatti.</td>
</tr>
<tr>
<td>III</td>
<td>Fig:1</td>
<td>A view of charnockite quarry at Paraikadu – near Tirumalaigiri.</td>
</tr>
<tr>
<td></td>
<td>Fig:2</td>
<td>The sharp contact between high grade charnockite to low grade biotite charnockite schist shows the retrogression at Paraikadu near Tirumalaigiri.</td>
</tr>
<tr>
<td>IV</td>
<td>Fig:1</td>
<td>The photograph showing the closely spaced horizontal joints producing sheet structure in charnockite at Mulleneri near Perumampatti.</td>
</tr>
<tr>
<td></td>
<td>Fig:2</td>
<td>The photograph showing the joints in charnockite at Mulleneri near Perumampatti.</td>
</tr>
<tr>
<td>V</td>
<td>Fig:1</td>
<td>The photograph showing the magnesite veins intruded in the step like fault developed in serpentine at Vattamuthampatti.</td>
</tr>
</tbody>
</table>
VI Fig:1 The photograph showing the feldspatic rock in eastern side of Kanjamalai at Malankadu near Perumampatti.

Fig:2 The photograph showing the quartz veins adjacent to feldspatic rock in eastern side of Kanjamalai at Malankadu near Perumampatti.

VII Fig:1 The photograph showing the anticlinal and synclinal folds in the feldspatic rock in eastern side of Kanjamalai at Malankadu near Perumampatti.

Fig:2 The photograph showing F2 folds in the feldspatic rock in eastern side of Kanjamalai at Malankadu near Perumampatti.

Fig:3 The photograph showing the ptygomatic folding of feldspatic vein in pyroxenite rock in eastern side of Kanjamalai at Malankadu near Perumampatti.

VIII Fig:1 The feldspatic rocks shows the gneissic structure due to the accumulation of mafic minerals like pyroxene southern portion of Kanjamalai near Ariyanur.

Fig:2 The feldspatic rock shows the banded structure due to the accumulation of pyroxene minerals near Ariyanur.
IX Fig:1 Well foliated quartzo-feldspathic rock in southern side of Kanjamalai near Sadaiyandi Oothu.

 Fig:2 Highly sheared phyllonitic pyroxene granulite as seen near Vattamuthampatti.

X Fig:1 Development of migmatitic structure in Quartzo-feldspathic gneissic rock at Ariyanur.

 Fig:2 Development of Augen gneissic structure in the Quartzo-feldspathic gneissic rock at Ariyanur.

 Fig:3 Photograph showing the fully intermingled granitic magma with Quartzo-feldspathic gneiss rock at Ariyanur.

XI Fig:1 Panoramic view of Kanjamalai showing three bands of banded magnetite quartzite.

 Fig:2 The photograph showing the cuboidal joints developed in banded magnetite quartzite rock in northern side of Kanjamalai near Perumampatti.

XII Fig:1 The photograph showing magnetite quartzite at western side of Kanjamalai near siddar koil.

 Fig:2 The photograph showing the concentration of linear band of iron in Banded Magnetite Quartzite at western side near Siddar koil.
XIII Fig:1 The photograph showing the crest of the fold developed in the mylonitized rock at southern side near Sadaiyandi Oothu.

Fig:2 The photograph showing the limbs of the fold developed in the mylonitized rock at southern side near Sadaiyandi Oothu.