CHAPTER - III

THE METHOD OF CENTRED SYSTEM
IN SMOOTH FUZZY TOPOLOGICAL
SPACE VIA t-OPEN SETS
CHAPTER – III

THE METHOD OF CENTRED SYSTEM IN

SMOOTH FUZZY TOPOLOGICAL SPACE VIA

t-OPEN SETS.

Ever since the introduction of fuzzy sets by Zadeh [79] and fuzzy topological spaces by Chang [22] various notions in classical topology have been extended to fuzzy topological spaces. The method of centred systems in the theory of topology was introduced in [32]. In 2007, the above concept was extended to fuzzy topological spaces by Uma, Roja and Balasubramanian [72]. In this chapter, we introduce maximal smooth fuzzy t-centred system and the concept of t-absolute ω (R) of a smooth fuzzy topological spaces. Besides providing the preliminary results, the fundamental theorem on smooth fuzzy t-irreducible* and smooth fuzzy t-perfect functions are also studied.

Throughout this chapter R stands for a smooth fuzzy t-Hausdorff space.
3.1 THE SPACES OF MAXIMAL SMOOTH FUZZY t-CENTRED SYSTEMS.

In this section, the maximal smooth fuzzy t-centred system is introduced and its properties are discussed.

Definition 3.1.1.

A smooth fuzzy topological space \((X, T)\) is said to be smooth fuzzy t-Hausdorff iff for any two distinct fuzzy points \(x_{t_1}, x_{t_2}\) in \(X\), there exists \(r\)-fuzzy t-open sets \(\lambda, \mu \in I^X, r \in I_0\), such that, \(x_{t_1} \in \lambda\) and \(x_{t_2} \in \mu\) with \(\lambda \uplus \mu\).

Definition 3.1.2.

Let \(R\) be a smooth fuzzy t-Hausdorff space. A system \(p_t = \{\lambda_i\}\) of \(r\)-fuzzy t-open sets of \(R\) is called a smooth fuzzy t-centred system if any finite collection of \(\{\lambda_i\}\) is such that \(\lambda_i \uplus \lambda_j\) for \(i \neq j, r \in I_0\). The system \(p_t\) is called maximal smooth fuzzy t-centred system or a smooth fuzzy t-end if it cannot be included in any larger smooth fuzzy t-centred system.

Definition 3.1.3.

Let \((X, T)\) be a smooth fuzzy topological space. Its smooth fuzzy \(Q^*\)-t-neighborhood structure is a mapping \(Q^* : X \times I^X \to I\) (\(X\) denotes the totality of all fuzzy points in \(X\)), defined by

\[
Q^* (x, \lambda) = \sup \{ \mu : \mu \text{ is a } r\text{-fuzzy t-open set, } \mu \leq \lambda, x \in \mu, r \in I_0 \} \quad \text{and}
\]

\[
\lambda = \inf_{x \in X} Q^* (x, \rho) \text{ is a } r\text{-fuzzy t-open set, } r \in I_0.
\]
We note the following properties of maximal smooth fuzzy t-centred system.

1. If $\lambda_i \in p_t (i = 1, 2, 3 ... n)$, then $\bigwedge_{i=1}^{n} \lambda_i \in p_t$.

Proof:

If $\lambda_i \in p_t (i = 1, 2, 3...n)$, then $\lambda_i \neq \lambda_j$ for $i \neq j$. If $\bigwedge_{i=1}^{n} \lambda_i \notin p_t$ then $p_t \cup \{ \bigwedge_{i=1}^{n} \lambda_i \}$ will be a larger smooth fuzzy t-end than p_t. This contradicts the maximality of p_t. Therefore, $\bigwedge_{i=1}^{n} \lambda_i \in p_t$.

2. If $0 < \lambda < \mu$, $\lambda \in p_t$ and μ is a r-fuzzy t-open set, $r \in I_0$, then $\mu \in p_t$.

Proof:

If $\mu \notin p_t$, then $p_t \cup \{ \mu \}$ will be a larger smooth fuzzy t-end than p_t. This contradicts the maximality of p_t. Therefore, $\mu \in p_t$.

3. If λ is a r-fuzzy t-open set, $r \in I_0$, then $\lambda \notin p_t$ iff there exists $\mu \in p_t$ such that $\lambda \not\subseteq \mu$.

Proof:

Let $\lambda \notin p_t$ be a r-fuzzy t-open set, $r \in I_0$. If there exists no $\mu \in p_t$ such that $\lambda \not\subseteq \mu$, then $\lambda \not\subseteq \mu$ for all $\mu \in p_t$. That is, $p_t \cup \{ \lambda \}$ will be a larger smooth fuzzy t-end than p_t. This contradicts the maximality of p_t.

Conversely, suppose that there exists $\mu \in p_t$ such that $\lambda \not\subseteq \mu$. If $\lambda \in p_t$, then $\lambda \not\subseteq \mu$. Contradiction. Hence, $\lambda \notin p_t$.

34
4. If \(\lambda_1 \lor \lambda_2 = \lambda_3 \in p_t \), \(\lambda_1 \) and \(\lambda_2 \) are r-fuzzy t-open sets in \(R \), \(r \in I_0 \),
with \(\lambda_1 \lor \lambda_2 \), then either \(\lambda_1 \in p_t \) or \(\lambda_2 \in p_t \).

Proof:

Let us suppose that both \(\lambda_1 \in p_t \) and \(\lambda_2 \in p_t \). Then, \(\lambda_1 \lor \lambda_2 \).

Contradiction. Hence, either \(\lambda_1 \in p_t \) or \(\lambda_2 \in p_t \).

Note 3.1.1.

Every smooth fuzzy t-centred system can be extended in at least one way to a maximum one.

3.2 THE SMOOTH FUZZY MAXIMAL STRUCTURE IN \(\theta (R) \).

In this section, smooth fuzzy maximal structure in the collection of all smooth fuzzy t-ends \(\theta (R) \) is introduced and its properties are investigated.

Let \(\theta (R) \) denote the collection of all smooth fuzzy t-ends belonging to \(R \). We introduce a smooth fuzzy maximal structure in \(\theta (R) \) in the following way: Let \(P_{\lambda} \) be the set of all smooth fuzzy t-ends that include \(\lambda \) as an element, where \(\lambda \) is a r-fuzzy t-open set of \(R \), \(r \in I_0 \). Now, \(P_{\lambda} \) is a smooth fuzzy Q*-t-neighborhood structure of each smooth fuzzy t-end contained in \(P_{\lambda} \). Thus, to each r-fuzzy t-open set \(\lambda \) of \(R \) there corresponds a smooth fuzzy Q*-t-neighborhood structure \(P_{\lambda} \) in \(\theta (R) \).

Proposition 3.2.1.

If \(\lambda \) and \(\mu \) are r-fuzzy t-open sets, \(r \in I_0 \), then
(a) \(P_{\lambda\mu} = P_\lambda \cup P_\mu \).

(b) \(P_\lambda \cup P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}} = \emptyset (R) \).

Proof:

(a). Let \(p_t \in P_\lambda \). That is, \(\lambda \in p_t, r \in I_0 \). Then by Property 2., \(\lambda \vee \mu \in p_t \).

That is, \(p_t \in P_{\lambda\mu} \). Hence, \(P_\lambda \cup P_\mu \subseteq P_{\lambda\mu} \). Let \(p_t \in P_{\lambda\mu} \). That is, \(\lambda \vee \mu \in p_t \).

By the definition of \(P_\lambda \), \(\lambda \in p_t \) or \(\mu \in p_t \). That is, \(p_t \in P_\lambda \) or \(p_t \in P_\mu \),

therefore, \(p_t \in P_\lambda \cup P_\mu \). This shows that \(P_\lambda \cup P_\mu \supseteq P_{\lambda\mu} \). Hence,

\[P_{\lambda\mu} = P_\lambda \cup P_\mu. \]

(b). If \(p_t \notin P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}} \), then \(\Gamma^{-t-C_{t(R)}(\lambda, r)} \notin p_t \). That is, \(\lambda \in p_t \) and \(p_t \in P_\lambda, r \in I_0 \). Hence, \(\emptyset (R) - P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}} \subset P_\lambda \). If \(p_t \in P_\lambda \), then \(\lambda \in p_t \).

That is, \(\Gamma^{-t-C_{t(R)}(\lambda, r)} \notin p_t, p_t \notin P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}} \). Therefore,

\[p_t \notin \emptyset (R) - P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}}. \]

That is, \(P_\lambda \subset \emptyset (R) - P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}} \). Hence, \(P_\lambda \cup P_{\Gamma^{-t-C_{t(R)}(\lambda, r)}} = \emptyset (R) \).

Definition 3.2.1.

\(\emptyset (R) \) with the smooth fuzzy maximal structure is said to be smooth fuzzy \(t \)-compact if every covering of \(\emptyset (R) \) of the form \(P_{\lambda\alpha} \),

where each \(P_{\lambda\alpha} \) is \(r \)-fuzzy \(t \)-open, \(r \in I_0 \), has a finite subcover.

Proposition 3.2.2.

\(\emptyset (R) \) with the smooth fuzzy maximal structure described above
is a smooth fuzzy t-compact space and has a base of smooth fuzzy Q^*t-neighborhood structure $\{ P_\lambda \}$ that are both r-fuzzy t-open and r-fuzzy t-closed, $r \in I_0$.

Proof:

Each P_λ in $\theta (R)$ is r-fuzzy t-open, by definition and by (b) of Proposition 3.2.1., it follows that P_λ is r-fuzzy t-closed. Thus $\theta (R)$ has a base of smooth fuzzy Q^*t-neighborhood structure $\{ P_\lambda \}$ that are both r-fuzzy t-open and r-fuzzy t-closed, $r \in I_0$. We now show that $\theta (R)$ is smooth fuzzy t-compact. Let $\{ P_{\lambda_\alpha} \}$ be a covering of $\theta (R)$ where each P_{λ_α} is r-fuzzy t-open. If it is impossible to pick a finite subcovering from the covering, then no set of the form $\tilde{1} - \bigvee_{i=1}^{n} t-C_{T(\theta(R))} (\lambda_{\alpha_i}, r)$ is $\tilde{0}$, since otherwise the sets P_{λ_α} would form a finite covering of $\theta (R)$. Hence, the r-fuzzy t-open sets $\tilde{1} - \bigvee_{i=1}^{n} t-C_{T(\theta(R))} (\lambda_{\alpha_i}, r)$ form a smooth fuzzy t-centred system. It may be extended to a maximal smooth fuzzy t-centred system p_α. This maximal smooth fuzzy t-centred system is not contained in any $\{ P_{\lambda_\alpha} \}$ since it contains, in particular, all the $\tilde{1} - t-C_{T(\theta(R))} (\lambda_{\alpha_i}, r)$. This contradiction proves that $\theta (R)$ is smooth fuzzy t-compact.
3.3 THE ABSOLUTE $\omega (R)$ OF A SMOOTH FUZZY TOPOLOGICAL
SPACE R.

In this section, smooth fuzzy t-absolute $\omega (R)$ of R is defined and its properties are studied.

The maximal smooth fuzzy t-centred system of r-fuzzy t-open sets, $r \in I_0$ of R regarded as elements of the space $\theta (R)$, fall into two classes, those smooth fuzzy t-ends each of which contain all r-fuzzy t-open sets containing a fuzzy point of R and the smooth fuzzy t-ends not containing such smooth fuzzy system of r-fuzzy t-open sets. The space of all smooth fuzzy t-ends of the first type of $\theta (R)$ is called the smooth fuzzy t-absolute of R and is denoted by $\omega (R)$. In $\omega (R)$ each fuzzy point α of R is represented by smooth fuzzy t-ends containing all r-fuzzy t-open sets containing α. Now, $\omega (R) = \cup \{ \lambda (\alpha) / \alpha$ is a fuzzy point of R, where $\lambda (\alpha)$ denotes the set of all smooth fuzzy t-ends containing all r-fuzzy t-open sets containing α, $r \in I_0 \}$. The smooth fuzzy t-absolute space $\omega (R)$ is functioned in a natural way onto R. If $p \in \omega (R)$, then we define $\pi_R (p) = \alpha$, where α is the fuzzy point such that all r-fuzzy t-open sets containing α belongs to p. Now, π_R is called smooth fuzzy natural function of $\omega (R)$ onto R.

Definition 3.3.1.

Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A function $f : R_1 \rightarrow R_2$ is called a smooth fuzzy t-irreducible* function if
there is no proper r-fuzzy t-closed set \(\lambda \) of \(R_1 \), \(r \in I_0 \), such that \(f(\lambda) = \bar{I} \).

Definition 3.3.2.

Let \(R_1 \) and \(R_2 \) be any two smooth fuzzy t-Hausdorff spaces. A function \(f: R_1 \to R_2 \) is called a smooth fuzzy t-perfect function if the image of a r-fuzzy t-closed set is r-fuzzy t-closed, \(r \in I_0 \) and the inverse image of each fuzzy point is smooth fuzzy t-compact.

Definition 3.3.3.

Let \(R_1 \) and \(R_2 \) be any two smooth fuzzy t-Hausdorff spaces. A function \(f: R_1 \to R_2 \) is called a smooth fuzzy t-compact function if the inverse image of each \(\lambda \) is smooth fuzzy t-compact.

Proposition 3.3.1.

The natural function \(\pi_R \) of \(\omega (R) \) onto \(R \) is smooth fuzzy t-irreducible* and smooth fuzzy t-compact.

Proof:

Let \(\beta \) be a fuzzy point of \(R \). If \(\pi_R (p_t) = \beta \), \(\pi_R^{-1} (\beta) \) is a set of all smooth fuzzy t-ends \(p_t \) which contain all r-fuzzy t-open sets, \(r \in I_0 \), containing \(\beta \). Since \(\theta (R) \) has a base of smooth fuzzy \(Q^*t \)-neighborhood structure \(\{ P_{\lambda} \} \) that are both r-fuzzy t-open and r-fuzzy t-closed, \(\pi_R^{-1} (\beta) \) is a r-fuzzy t-closed set in \(\theta (R) \). Since \(\theta (R) \) is smooth fuzzy t-compact, \(\pi_R^{-1} (\beta) \) is smooth fuzzy t-compact. Therefore, \(\pi_R \) is smooth fuzzy t-compact.
To Prove π_R is smooth fuzzy t-irreducible* it is enough to show that every r-fuzzy t-open set in $\omega (R)$ contains whole of some set $\pi_R^{-1} (\beta)$, where β is a fuzzy point of R. But this follows, because each P_λ contains the whole of $\pi_R^{-1} (\beta)$, where $\beta \leq \lambda$, and because $\{ P_\lambda \}$ is a smooth fuzzy Q^*t-neighborhood structure in $\theta (R)$.

Proposition 3.3.2.

If f is a smooth fuzzy t-irreducible* and smooth fuzzy t-closed function of R_1 onto R_2 then the image of every r-fuzzy t-open set $\lambda \neq \bar{0}$ in R_1 is a r-fuzzy t-open set in R_2 with $f(\lambda) \neq \bar{0}$, $r \in I_0$.

Proof:

Let λ be a r-fuzzy t-open set with $\lambda \neq \bar{0}$, $\lambda \in R_1$, $r \in I_0$. Since f is a smooth fuzzy t-closed function, $f(\bar{1} - \lambda)$ is also a r-fuzzy t-closed set. Since f is onto, $f(\bar{1} - \lambda) = \bar{1} - f(\lambda)$. Therefore, $f(\lambda)$ is a r-fuzzy t-open set, $f(\lambda) \in R_2$. Since f is smooth fuzzy t-irreducible*, $f(\bar{1} - \lambda) \neq \bar{1}$. That is, $\bar{1} - f(\lambda) \neq \bar{1} \Rightarrow f(\lambda) \neq \bar{0}$.

Notation:

t-$\text{Int}_t(\lambda, r)$ denotes the t-interior of λ throughout this chapter.

Proposition 3.3.3.

If f is a smooth fuzzy t-irreducible* and smooth fuzzy t-closed function of R_1 onto R_2, $\text{Int}_{\text{t}[R_1]}(f^{-1}(\lambda), r) \neq \bar{0}$ for every r-fuzzy t-open set $\lambda \neq \bar{0}$, $\lambda \in R_2$, $r \in I_0$.

40
Proof:

Since \(f \) is a smooth fuzzy \(t \)-closed and smooth fuzzy \(t \)-irreducible* function, \(f(\bar{1} - \text{Int}_{\tau(R_1)}(f^{-1}(\lambda), r)) \neq \bar{1}, \ r \in I_0 \). Since \(f \) is onto, \(f(\text{Int}_{\tau(R_1)}(f^{-1}(\lambda), r)) \neq \emptyset \). By Proposition 3.3.2., it follows that \(\text{Int}_{\tau(R_1)}(f^{-1}(\lambda), r) \neq \emptyset \).

3.4 THE FUNDAMENTAL THEOREM ON SMOOTH FUZZY \(t \)-IRREDUCIBLE* AND SMOOTH FUZZY \(t \)-PERFECT FUNCTION.

In this section, the fundamental theorem on smooth fuzzy \(t \)-irreducible* and smooth fuzzy \(t \)-perfect functions are introduced.

Theorem 3.4.1.

Let \(R_1 \) and \(R_2 \) be any two smooth fuzzy \(t \)-Hausdorff spaces. Let \(f \) be a smooth fuzzy \(t \)-continuous, smooth fuzzy \(t \)-irreducible* and smooth fuzzy \(t \)-perfect function of \(R_1 \) onto \(R_2 \). Then, there exists a smooth fuzzy \(t \)-homeomorphism \(\psi \) of \(\omega(R_1) \) onto \(\omega(R_2) \) such that \(f \circ \pi_{R_1} = \pi_{R_2} \circ \psi \).

\[
\begin{array}{ccc}
R_1 & \xrightarrow{f} & R_2 \\
\pi_{R_1} & & \pi_{R_2} \\
\omega(R_1) & \xrightarrow{} & \omega(R_2)
\end{array}
\]
Proof:

Let \(\{ \lambda \} \) be a maximal smooth fuzzy \(t \)-centred system of \(r \)-fuzzy \(t \)-open sets of \(R_1 \), \(r \in I_0 \). In \(R_2 \), consider the system \(\{ t\text{-Int}_{T(R_2)}(f(\lambda), r) \} \), where \(t\text{-Int}_{T(R_2)}(f(\lambda), r) \) is a \(r \)-fuzzy \(t \)-open set, by Proposition 3.3.2., each of its sets is non-zero, \(r \in I_0 \). Clearly, the system is smooth fuzzy \(t \)-centred. Extend it to a maximal smooth fuzzy \(t \)-centred system of \(r \)-fuzzy \(t \)-open sets in \(R_2 \) and prove that this extension is unique.

Suppose that there exist two \(r \)-fuzzy \(t \)-open sets \(\lambda_1, \lambda_2 \in R_2 \) with \(\lambda_1 \not\subseteq \lambda_2 \), such that \(\lambda_1 \not\subseteq t\text{-Int}_{T(R_2)}(f(\lambda), r) \) and \(\lambda_2 \not\subseteq t\text{-Int}_{T(R_2)}(f(\lambda), r) \) for every \(\lambda \) in \(\{ \lambda \} \). Now, \(t\text{-Int}_{T(R_1)}(f^{-1}(\lambda_1), r) \not\subseteq t\text{-Int}_{T(R_1)}(f^{-1}(\lambda_2), r) \) implies, \(t\text{-Int}_{T(R_1)}(f^{-1}(\lambda_1), r) \not\subseteq \lambda \) and \(t\text{-Int}_{T(R_1)}(f^{-1}(\lambda_2), r) \not\subseteq \lambda \). But this is impossible, because \(\{ \lambda \} \) is maximal smooth fuzzy \(t \)-centred system. Thus \(\{ t\text{-Int}_{T(R_2)}(f(\lambda), r) \} \) can be extended in only one way to a maximal smooth fuzzy \(t \)-centred system \(\{ y_1 \} \) where \(y_i \) is a \(r \)-fuzzy \(t \)-open set, \(r \in I_0 \).

Assume that \(\{ \lambda \} \) contains all \(r \)-fuzzy \(t \)-open sets, \(r \in I_0 \), containing the fuzzy point \(\alpha \) of \(R_1 \) and show that \(\{ y \} \) contains all \(r \)-fuzzy \(t \)-open sets containing the fuzzy point \(\beta \) of \(R_2 \) such that \(\beta = f(\alpha) \). Let \(\delta_\beta \) be a \(r \)-fuzzy \(t \)-open set containing the fuzzy point \(\beta \). Because \(f \) is a smooth fuzzy \(t \)-irreducible* and smooth fuzzy \(t \)-closed
function, \(t-\text{Int}_{T(R_1)}(f^{-1}(\delta_\beta), r) \) is a r-fuzzy t-open set containing the fuzzy point \(\alpha \), \(t-\text{Int}_{T(R_1)}(f^{-1}(\delta_\beta), r) \in \{\lambda\} \).

The set \(t-\text{Int}_{T(R_2)}(f(t-\text{Int}_{T(R_1)}(f^{-1}(\delta_\beta), r), r)) \leq \delta_\beta \) and belongs to \(\{\gamma\} \). Hence, \(q = \{\gamma\} \) is a point of \(\omega(R_2) \). Let \(\psi(p) = q \), to show that \(\psi \) is a function of \(\omega(R_1) \) onto \(\omega(R_2) \). Let \(q = \{\gamma\} \in \omega(R_2) \).

Consider the system \(\{t-\text{Int}_{T(R_1)}(f^{-1}(\gamma), r)\} \) of r-fuzzy t-open sets in \(R_1 \). The system is smooth fuzzy t-centred. We extend it to a maximal smooth fuzzy t-centred system of r-fuzzy t-open sets \(\{\lambda\} \) and consider the point \(\psi(p) \). As we show that, \(t-\text{Int}_{T(R_2)}(f(\lambda), r) \) may be extended in a unique way to a maximal system \(\{\gamma_1\} \).

To show that \(\psi(p) = q \), it is sufficient to show that \(\{\gamma\} \subseteq \{\gamma_1\} \) and for this, it is enough to show that \(\gamma \in \{\gamma\} \) \(t-\text{Int}_{T(R_2)}(f(\lambda), r) \) for each \(\gamma \in \{\gamma\} \) and each \(t-\text{Int}_{T(R_2)}(f(\lambda), r) \in \{t-\text{Int}_{T(R_2)}(f(\lambda), r)\} \).

Clearly, \(\lambda \in \{\gamma\} \) \(t-\text{Int}_{T(R_1)}(f^{-1}(\gamma), r) \). That is, \(t-\text{Int}_{T(R_2)}(f(\lambda), r) \backslash q \gamma \).

Therefore, \(\psi(p) = q \). \(\psi \) is onto. The function \(\psi \) is one to one. For if, \(p_1 \neq p_2 \) then there exist r-fuzzy t-open sets \(\lambda_1 \) and \(\lambda_2 \), \(\lambda_1 \in p_1 \) and \(\lambda_2 \in p_2 \) such that \(\lambda_1 \notin \lambda_2 \), but then \(f(\lambda_1) \notin f(\lambda_2) \). That is,

\[
t-\text{Int}_{T(R_1)}(f(\lambda_1), r) \backslash t-\text{Int}_{T(R_2)}(f(\lambda_2), r).
\]

Hence, \(\psi(p_1) \neq \psi(p_2) \). The function \(\psi \) is one - one of \(\theta(R_1) \) into \(\theta(R_2) \).
taking $\omega (R_1)$ onto $\omega (R_2)$. To prove that ψ is a smooth fuzzy t-homeomorphism, it is enough to prove that ψ is a smooth fuzzy t-continuous because $\theta (R_1)$ is smooth fuzzy t-compact. Let $p' = \{ \lambda \}$ be an arbitrary smooth fuzzy t-end in R_1, that is an element of $\theta (R_1)$ and let $q' = \psi (p') = \{ \gamma \}$. Now, $\psi (p_\lambda) \subset p_\gamma = P_{t-\text{Int}_{\tau_2}} (f (\lambda), r)$. If $p'' \in p_\lambda$, then $\lambda \in p''$. Now, $t-\text{Int}_{\tau_2} (f (\lambda), r) \in \psi (p'')$ which means that

$$\psi (p'') \subset P_{t-\text{Int}_{\tau_2}} (f (\lambda), r).$$

This proves that ψ is a smooth fuzzy t-homeomorphism. To prove the theorem we have to show that $f \circ \pi_{R_1} = \pi_{R_2} \circ \psi$. Consider the function ψ only on $\omega (R_1) \subset \theta (R_1)$. From the construction of ψ it follows that every smooth fuzzy t-end containing all r-fuzzy t-open sets containing a is functioned by ψ into a smooth fuzzy t-end with r-fuzzy t-open sets containing fuzzy point β. $\psi (\pi_{R_1}^{-1} (a)) \subset \pi_{R_2}^{-1} (\beta)$. Hence, $f \circ \pi_{R_1} = \pi_{R_2} \circ \psi$. Thus the theorem proved.

Corollary 3.4.1.

The smooth fuzzy t-absolute of R_1 and R_2 are smooth fuzzy t-homeomorphic if there exists a smooth fuzzy topological space R such that R can be functioned onto both R_1 and R_2 by smooth fuzzy t-irreducible* and smooth fuzzy t-perfect function.
Proof:

Let f_1 be a smooth fuzzy t-irreducible* and smooth fuzzy t-perfect function from \mathbb{R} onto \mathbb{R}_1 and let f_2 be smooth fuzzy t-irreducible* and smooth fuzzy t-perfect function from \mathbb{R} into \mathbb{R}_2. By theorem 3.4.1., there exists a smooth fuzzy t-homeomorphism ψ_1 of $\omega(\mathbb{R})$ onto $\omega(\mathbb{R}_1)$ such that $f_1 \circ \pi_\mathbb{R} = \pi_{\mathbb{R}_1} \circ \psi_1$ and there exists a smooth fuzzy t-homeomorphism ψ_2 of $\omega(\mathbb{R})$ onto $\omega(\mathbb{R}_2)$ such that $f_2 \circ \pi_\mathbb{R} = \pi_{\mathbb{R}_1} \circ \psi_2$. Therefore, $\omega(\mathbb{R}_1)$ and $\omega(\mathbb{R}_2)$ are smooth fuzzy t-homeomorphic.