TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Name of the Chapter</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction to Small Wind Turbine Technology</td>
<td>1 - 35</td>
</tr>
<tr>
<td>II</td>
<td>Critique & Literature Survey</td>
<td>36 - 75</td>
</tr>
<tr>
<td>III</td>
<td>Aerodynamic Profile Development using CFD</td>
<td>76 - 93</td>
</tr>
<tr>
<td>IV</td>
<td>Finite Element Analysis of SWT Blades</td>
<td>94 - 170</td>
</tr>
<tr>
<td>V</td>
<td>Materials and Fabrication of SWT Blades</td>
<td>171 - 193</td>
</tr>
<tr>
<td>VI</td>
<td>Experimental Investigations through Load Deflection Test and Cyclic Load Bench Test</td>
<td>194 - 218</td>
</tr>
<tr>
<td>VII</td>
<td>Power Performance Analysis of SWT with Different Blade Profiles</td>
<td>219 - 238</td>
</tr>
<tr>
<td>VIII</td>
<td>Conclusions</td>
<td>239 - 244</td>
</tr>
<tr>
<td></td>
<td>References / Bibliography</td>
<td>254 - 258</td>
</tr>
</tbody>
</table>
Table of Contents

1.1 Introduction
1.2 Introduction to Wind
1.2.1 Power in the Wind
1.3 Wind Turbine Technical Basics
1.3.1 Vertical Axis Wind Turbines
1.3.2 Horizontal Axis Wind Turbines
1.3.3 HAWT Operating Ranges and Over Speed Control
1.4 Small Scale Wind Turbine Technology
1.4.1 Rotor Orientation
1.4.2 Over Speed Control
1.4.3 Electrical Power Generation
1.4.4 Towers
1.4.5 Rotors
1.5 Wind Turbine Blade Aerodynamics
1.5.1 Aerodynamics and Loads
1.5.1.1 Number of Blades
1.5.1.2 Capturing Wind Power by Rotor Blades
1.5.1.3 Lift & Drag Vectors
1.5.2 Apparent Wind Angles
1.5.2.1 Blade at Low, Medium & High Angles of Attack Twist
1.5.2.2 Blade Section Shape
1.5.3 Blade Twist
1.5.3.1 Typical Aerofoil Shapes Offering Good Lift / Drag Ratio
1.5.3.2 Blade Planform Shape
1.5.3.3 Rotational Speed
1.5.3.4 Optimum Blade Planform
1.5.4 Effect of Tip Speed Ratio on Sensitivity to Drag
1.5.4.1 Swirl in the Wake
1.5.4.2 Power and Pitch Control
1.5.4.3 Turbine Power Curve
1.6 Organization of Thesis
2.1 Literature Survey 36
2.2 Critique on Literature 73

3.1 Profile Development 76
3.1.1 Wind Power 76
3.1.2 Wind Power Density 77
3.1.3 Lift and Drag 77
3.2 NACA Airfoils 78
3.2.1 Five - Digit Series 79
3.2.2 NACA 6-Series Airfoil 79
3.2.3 Chord Length Measurement 84
3.3 Aerodynamic Analysis of SWT Blade by using CFD 85
3.4 Computational Method 85
3.5 CFD Results and Discussions 88
3.6 Free Stream Velocities 88
3.7 Summary 93

4.1 Introduction to FEA 94
4.2 Static Analysis of SWT Blades 95
4.3 Modal and Harmonic Analysis of SWT Blades 98
4.4 Results and Discussions 167

5.1 Introduction to SWT Blades Manufacturing 171
5.2 Overview of the Production Process 171
5.3 Basic Design 172
5.4 Materials Required 174
5.5 Chemicals Required 175
5.5.1 Resin 175
5.5.1.1 Resin Type 'R10-03' 175
5.5.1.2 Resin Type 'Polymer 31-441' 176
5.5.2 Hardener 176
5.5.3 Styrene Monomer 176
5.5.4 Cobalt 176
5.5.5 Toner
5.5.6 Lowilite
5.5.7 Dura wax
5.6 Fibre Glass
5.6.1 CSM (Chopped Strand Glass Fibre Mat)
5.6.2 WC (Woven Cloth Glass Fiber)
5.6.3 Thinners
5.6.4 Fibre Core Root
5.6.5 Car Body Filler
5.6.6 Expanding Foam
5.6.7 Blade Half Manufacture
5.6.8 Fabrication Procedure
5.6.8.1 Initial Preparations
5.6.8.2 Blade Fabrication Procedure
5.6.8.3 Mould
5.6.8.4 Blade Joining
5.6.8.5 Blade Trimming
5.6.8.6 Blade Finishing
5.6.9 Sandwich Material
5.6.10 Balancing the Turbine Rotor
5.6.11 Mounting the Rotor Blades

6.1 Various Forces Acting on SWT
6.2 Dynamic Loads on Small Wind Turbine System
6.3 Load Deflection Test
6.4 Load Deflection Test Setup and Procedure
6.5 Cyclic Load Bench Test
6.5.1 Procedure for Cyclical Test on Wind Turbine Blades
6.5.2 Developing Cyclic Load Bench Test
6.5.3 Discussions on the Results of Load Deflection Test and Cyclic Load Bench Test

7.1 Principle of Extracting Energy from Wind
7.2 Power Extraction from Wind Turbine
7.3 Power Performance Analysis
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Permanent Magnet Alternate Current (PMAC) Generator for SWT</td>
<td>224</td>
</tr>
<tr>
<td>7.5</td>
<td>Details of Field and Other Aspects</td>
<td>228</td>
</tr>
<tr>
<td>7.6</td>
<td>Development of Power Curves</td>
<td>230</td>
</tr>
<tr>
<td>7.7</td>
<td>Analysis of Results of Power Performance Test</td>
<td>236</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Analysis of Results of Power Performance Test for R21 Blade Profiles</td>
<td>237</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Analysis of Results of Power Performance Test for R22 Blade Profiles</td>
<td>237</td>
</tr>
</tbody>
</table>