<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. REVIEW OF LITERATURE</td>
<td>4</td>
</tr>
<tr>
<td>III. MATERIALS AND METHODS</td>
<td>31</td>
</tr>
<tr>
<td>IV. RESULTS</td>
<td>58</td>
</tr>
<tr>
<td>A. Isolation, Identification and maintenance of P. solanacearum</td>
<td>58</td>
</tr>
<tr>
<td>B.1. Growth on Dye's medium with glycerol as carbon source</td>
<td>60</td>
</tr>
<tr>
<td>2. Growth on simple phenols</td>
<td>60</td>
</tr>
<tr>
<td>3. Growth on phenolic acids</td>
<td>62</td>
</tr>
<tr>
<td>C. Metabolism of catechin by P. solanacearum</td>
<td>63</td>
</tr>
<tr>
<td>D. Utilization of catechin in presence of sugars</td>
<td>63</td>
</tr>
<tr>
<td>1. Effect of glucose on catechin utilization</td>
<td>64</td>
</tr>
<tr>
<td>2. Effect of fructose on catechin utilization</td>
<td>64</td>
</tr>
<tr>
<td>3. Effect of sucrose on catechin utilization</td>
<td>64</td>
</tr>
<tr>
<td>4. Effect of galactose on catechin utilization</td>
<td>64</td>
</tr>
<tr>
<td>5. Effect of xylose on catechin utilization</td>
<td>65</td>
</tr>
<tr>
<td>6. Effect of lactose on catechin utilization</td>
<td>65</td>
</tr>
<tr>
<td>7. Effect of arabinose on catechin utilization</td>
<td>65</td>
</tr>
<tr>
<td>8. Effect of glycerol on catechin utilization</td>
<td>65</td>
</tr>
<tr>
<td>9. Effect of glycerol on resorcinol utilization</td>
<td>66</td>
</tr>
<tr>
<td>E. Oxidation of catechin</td>
<td>66</td>
</tr>
<tr>
<td>1. Cells grown on glycerol</td>
<td>66</td>
</tr>
<tr>
<td>2. Cells grown on catechin</td>
<td>66</td>
</tr>
<tr>
<td>3. Oxidation of catechin by cells induced in catechin</td>
<td>67</td>
</tr>
</tbody>
</table>
4. Oxidation of catechin at different pH
5. Oxidation of catechin by cell free extracts
6. Time course disappearance of catechin

F. Degradation of catechin
 Identification of intermediates of catechin degradation
 a. Protocatechuic acid
 b. Phloroglucinolcarboxylic acid
 c. Catechol

G.1. Utilization of intermediates of catechin breakdown by *Ps. solanacearum*
 2. Oxidation of catechin intermediates

H. Metabolism of phloroglucinolcarboxylic acid

I. Utilization of intermediates of phloroglucinolcarboxylic acid degradation

J. Oxidation of intermediates of phloroglucinolcarboxylic acid

K. Degradation of protocatechuic acid

L.1. Sequential appearance of dioxygenase of catechin degradation
 2. Induction of dioxygenases of catechin degradation
 a. Effect of catechin on the induction of dioxygenases
 b. Effect of protocatechuate on the induction of dioxygenases
 c. Effect of catechol on the induction of dioxygenases
d. Effect of hydroxyquinol on the induction of dioxygenases 82

e. Dioxygenase activities of cells maintained in catechin and grown in aromatic substrate 83

f. Enzymes of phloroglucinolcarboxylic acid degradation 84

g. Isolation and characterization of phloroglucinolcarboxylic acid decarboxylase 84

M. Antibiotic tolerance of Ps. solanacearum 87

N. Curing antibiotic resistant cells 88

O. Curing Cat+ phenotype of Ps. solanacearum 89

P. Isolation of plasmid DNA 91

Q. Transferability of Cat+ phenotype to a Pseudomonas sp. 92

V. DISCUSSION 93

VI. SUMMARY 116

VII. ACKNOWLEDGEMENTS 120

VIII. LITERATURE CITED 122
LIST OF FIGURES

1. Mechanism proposed for gallic acid decomposition
2. Degradative pathway of gallic acid
3. Degradation of catechin by Aspergillus flavus
4. Degradation of gallic acid by Ps. putida
5. Degradation of catechin by Chaetomium cupreum
6. Proposed reaction sequence for the enzymatic conversion of benzene to catechol
7. Initial reactions utilized by procaryotic and eucaryotic organisms for the oxidation of aromatic hydrocarbons
8. NIH shift mechanism
9. Degradation of aromatic substances via catechol as the central metabolite
10. Degradation of aromatic substances via protocatechuate as the central metabolite
11. The central reactions of β-ketoadipate pathway in bacteria
12. Metabolism of phloroglucinol by Pseudomonas sp.
13. Bacterial dioxygenases that cleave dihydric phenols
14. Non-oxidative decarboxylation of vanillic acid by Streptomyces setoni
15. Mechanism of conversion of o-phthalic acid to benzoic acid
16. Pathway of o-phthalate catabolism in Ps. fluorescens PHK
17. The degradative pathway encoded by TOL plasmid
18. A model for the positive regulation of xyl operons
19. Naphthalene-salicylate oxidation pathway: enzyme and gene designations
20. Degradation of 3-chlorobenzoate and 4-chlorobenzoate by *Pseudomonas* sp. B13 (TOL\(^+\))

21. Growth of *Ps. solanacearum* on Dye's medium

22. Growth of *Ps. solanacearum* on resorcinol

23. Growth of *Ps. solanacearum* on catechol

24. Growth of *Ps. solanacearum* on hydroxyquinol

25. Growth of *Ps. solanacearum* on protocatechuic acid

26. Growth of *Ps. solanacearum* on gallic acid

27. Growth of *Ps. solanacearum* on phloroglucinolcarboxylic acid

28. Growth of *Ps. solanacearum* on catechin

29. Growth of *Ps. solanacearum* (induced) on catechin

30. Effect of glucose on catechin utilization

31. Effect of fructose on catechin utilization

32. Effect of sucrose on catechin utilization

33. Effect of galactose on catechin utilization

34. Effect of xylose on catechin utilization

35. Effect of lactose on catechin utilization

36. Effect of arabinose on catechin utilization

37. Effect of glycerol on catechin utilization

38. Effect of glycerol on resorcinol utilization

39. Oxidation of catechin by induced and uninduced cells

40. Oxidation of catechin by different concentrations of catechin induced cells

41. Oxidation of catechin by induced cells at different pH

42. Oxidation of catechin by cell free extracts

43. Time course disappearance of catechin

44. UV spectrum of protocatechuic acid

45. Mass spectrum of protocatechuic acid
46. UV spectrum of catechin
47. Mass spectrum of catechin
48. UV spectrum of phloroglucinolcarboxylic acid
49. Mass spectrum of phloroglucinolcarboxylic acid
50. UV spectrum of catechol
51. Mass spectrum of catechol
52. Growth of \textit{Ps. solanacearum} (induced) on phloroglucinol-
carboxylic acid
53. Growth of \textit{Ps. solanacearum} (induced) on protocatechuic acid
54. Growth of \textit{Ps. solanacearum} (induced) on catechol
55. Oxidation of protocatechuic acid by induced and uninduced
cells
56. Oxidation of catechol by induced and uninduced cells
57. Oxidation of phloroglucinolcarboxylic acid by induced
and uninduced cells
58. Oxidation of catechin and its cleaved products by induced
cells
59. Oxidation of catechin and its cleaved products by cell
free extracts of induced cells
60. UV spectrum of phloroglucinol
61. Mass spectrum of phloroglucinol
62. UV spectrum of resorcinol
63. Mass spectrum of resorcinol
64. UV spectrum of hydroxyquinol
65. Mass spectrum of hydroxyquinol
66. Characteristic colour formation of some intermediates
during growth of \textit{Ps. solanacearum} on phloroglucinol-
carboxylic acid
67. Growth of *Ps. solanacearum* (induced) on phloroglucinol
68. Growth of *Ps. solanacearum* (induced) on resorcinol
69. Growth of *Ps. solanacearum* (induced) on hydroxyquinol
70. Oxidation of phloroglucinol by induced and uninduced cells
71. Oxidation of resorcinol by induced and uninduced cells
72. Oxidation of hydroxyquinol by induced and uninduced cells
73. Oxidation of phloroglucinolcarboxylic acid and its intermediates by cell free extracts
74. Sequential appearence of dioxygenase enzymes of catechin dissimilation
75. Dioxygenase activities of cells maintained on glycerol and grown once on aromatic substances
76. Dioxygenase activities of cells maintained on catechin and grown once on aromatic substances
77. Effect of substrate concn on PCDase
78. Effect of pH on PCDase
79. Effect of temperature on PCDase
80. Effect of substrate analogues on PCDase
81. Curing of streptomycin resistance
82. Curing of chloramphenicol resistance
83. Curing of gentamycin resistance
84. Curing of kanamycin resistance
85. Curing of novobiocin resistance
86. Curing of ampicillin resistance
87. Curing of rifampicin resistance
88. Curing of erythromycin resistance
89. Curing of antibiotic resistance
90. Acridine orange curing of Cat^+ phenotype
91. Mitomycin C (10 μg/mL) curing of Cat⁺ phenotype
92. Agarose gel electrophoresis of plasmid DNA from wild and cured strains of *Ps. solanacearum*
93. Growth of Cat⁺ and Cat⁻ cells on catechin
94. Growth of Cat⁺ and Cat⁻ cells on phloroglucinol-carboxylic acid
95. Growth of Cat⁺ and Cat⁻ cells on protocatechuic acid
96. Growth of Cat⁺ and Cat⁻ cells on catechol
97. Growth of Cat⁺ and Cat⁻ cells on phloroglucinol
98. Growth of Cat⁺ and Cat⁻ cells on resorcinol
99. Growth of Cat⁺ and Cat⁻ cells on hydroxyquinol
100. Proposed pathway for the degradation of catechin by *Ps. solanacearum*
101. Proposed pathway for the degradation of phloroglucinol-carboxylic acid by *Ps. solanacearum*
LIST OF TABLES

1. Cometabolism of phenolic substances
2. Dissimilatory genes of plasmid residence
3. Molecular weights of plasmids found in toluene-xylene degrading Pseudomonas
4. Parameters for mass spectral analysis
5. Antibiotic solution preparation
6. Tests used for the identification of Ps. solanacearum
7. Generation time of Ps. solanacearum in different carbon sources
8. Mass spectral analysis of catechin and its intermediates
9. Retention times of catechin and its intermediates
10. Estimation of catechol
11. Sequential appearance of dioxygenase enzymes of catechin degradation
12. Dioxygenase activities of the cells maintained in glycerol and grown in aromatic substrate
13. Dioxygenase activities of the cells maintained in catechin and grown in aromatic substrate
14. Induction of hydroxyquinol 1,2-dioxygenase with phloroglucinolcarboxylic acid and its intermediates
15. Effect of substrate concn on phloroglucinolcarboxylic acid decarboxylase
16. Effect of substrate analogues on phloroglucinolcarboxylic acid decarboxylase
17. Decarboxylation of substrate analogues by phloroglucinolcarboxylic acid decarboxylase
18. Effect of antibiotics on \textit{Ps. solanacearum}

19. Sensitivity/resistance of \textit{Ps. solanacearum} to antibiotics

20. Curing of antibiotic resistance of \textit{Ps. solanacearum}

21. Curing of Cat\(^+\) phenotype

22. Heat curing of Cat\(^+\) phenotype

23. Curing of \textit{Pseudomonas} degradative plasmids

24. Frequency of transfer of \textit{Pseudomonas} dissimilatory plasmids from native hosts to their isogenic cured derivatives
ABBREVIATIONS USED

A = Aspergillus
bp = base pairs
C = Chaetomium
Cat⁺ = Cells utilizing catechin
Cat⁻ = Cells not utilizing catechin
E = Endothia
EDTA = Ethylene diamine tetracetic acid
HPLC = High performance liquid chromatography
kb = Kilobase
PCDase = Phloroglucinolcarboxylic acid decarboxylase
Ps. = Pseudomonas
R = Rhizobium
T = Trichosporon
TCA = Trichloroacetic acid
TZC = Tetrazolium chloride
VII. ACKNOWLEDGEMENTS

I am extremely grateful and deeply indebted to Professor A. Mahadevan, Director, Centre of Advanced Study in Botany, University of Madras, for suggesting this problem, his continued, intensive and inspiring guidance, discussion and critical perusal of the manuscript.

I thank Dr. K. Dharmalingam, Reader, Madurai Kamaraj University for training me in gene cloning and DNA sequencing and for the facilities provided.

I thank Dr. D.V. Ramana, Department of Chemistry, Indian Institute of Technology, Madras, for mass spectral analysis.

I acknowledge my sincere thanks to Dr. (Mrs) Nel Mahadevan for critical perusal of the manuscript.

My thanks are due to Prof. R. Sivaramakrishnan for his continued encouragement and to Miss. G. Gurujevalakshmi for her help during the progress of this research.

I thank Mr. T. Sivasubramanian for typing the thesis and P.M. Asokan for assistance.

I thank Mr. N. Mohan, Dr. G. Muthukumar, Dr. Felicia William, Dr. T. Sambandam, Dr. S.N. Sivaswamy, Mr. N. Parthasarathy, Mr. S. Balajee, Mr. P. Gowrinathan, Mr. M.R. Nararajan and Mr. R. Ramalingam for their help and suggestions.

I express my solitary thanks to my parents and family members for their continuous encouragement in all the ways.
I thank the University Grants Commission for the award of fellowship during the tenure of which this investigation was carried out. Financial assistance received from Prof. and Mrs. Mahadevan is acknowledged with pleasure.