CONCLUSION

In the present study experiments were made to evaluate the role of *Rhizobacterium* strains BR2 and BR3 on Cowpea plant growth (varieties Pusa Sukomal and RC101) grown under different salt concentrations i.e. 0, 25, 50 and 75mM NaCl. The Rhizobacterial strains BR2 and BR3 shown to reduce the adverse effects of salt stress by improving growth parameters and biochemical parameters. Rhizobacterial strains BR2 and BR3 shown to improved salt tolerance in both varieties of Cowpea plants by enhancing the accumulation of sugars and proline as protective adaptations and reducing the level of MDA and enhancing the chlorophyll content. The Rhizobacteria mitigate the harmful effect of salinity with resulting in the greatest growth compare with non inoculated control (without *Rhizobacterium*). The present study suggests that the inoculation of *Rhizobacterium* has reduced the stress induced due to saline conditions. Overall we conclude that the BR3 strain of Rhizobacteria, has shown better salt tolerance compared with BR2 and non inoculated control plants. The Pusa Sukomal variety of Cowpea has shown better results compare with RC101 variety of Cowpea. The combination of variety Pusa Sukomal of Cowpea and BR3 strain of *Rhizobacterium* have shown performed better results than others. However proper combination of variety and strain has to be identified. All Biochemical and growth parameters have clearly shown improvement under saline conditions in the presence of *Rhizobacterium*. This study improved the plant variety to grow in adverse conditions of salinity and thus productivity increased to fulfill the todays demand.