Contents

Index of Symbols & Terms

Chapter I: Some Fundamental Function Spaces Forming the Basis of the Theory of Generalized Functions 1-22

1.1 Introduction 1
1.2 The Banach Space $C(X)$ 1
1.3 The Frechet Space $C(\)$ 3
1.4 The Frechet Space $C^\infty(\Omega)$ 5
1.5 The Function Spaces $C_c(X), C_o(X), D_K(\Omega)$ 6
1.6 The Banach spaces $L^p(\)$ 8
1.7 Testing Function Space $D(\Omega)$ 17
1.8 The Space of Rapidly Decreasing Functions 20

Chapter II: Distributions and Their Fundamental Properties 23-54

2.1 Distributions And Generalized Functions 23
2.2 Distribution Spaces $D'(\)$ 25
2.3 Equality of Distributions 27
2.4 Support of A Distribution 29
2.5 Some Operations on Distributions 31
2.6 Multiplication of Distributions 34
2.7 Convergence in the Space $D'(\Omega)$ 38
2.8 Differentiation of Distributions 45
2.9 Tempered Distributions 50
Chapter III: Generalized Legendre Transformation and Convolution Theorem 55-72

3.1 Introduction 55
3.2 Preliminaries 55
3.3 The Generalized Legendre Transformation 64
3.4 Convolution 69

Chapter IV: Generalized Laguerre Transform and Its Properties 73-110

4.1 Introduction 73
4.2 Laguerre Polynomial 73
4.3 Laguerre Transformation 86
4.4 Generalized Laguerre Transforms 92
4.4.1 Testing Function Space \(A'(L_n^{(a)}) \) 95
4.4.2 Space of Laguerre Transformable Generalized Function \(A'(L_n^{(a)}) \) 99
4.4.3 Convolution of Laguerre Transformable Generalized Functions 103
4.5. A Note on an Integral Involving Laguerre Polynomial 107
4.5.1 Preliminary Results 107
4.5.2 Proof of the formula (4.5.1) 109
4.5.3 Remarks 110

Chapter V: Fractional Calculus of Generalized Functions 111-136

5.1 Introduction 111
5.2 Fundamental Definitions 112
5.2.1 Fractional Derivative with Respect to An Arbitrary Function 118
5.2.2 Fractional Partial Derivative 119

5.3 Properties and Generalizations of Riemann-Liouville and Weyl Fractional Integral Operators. 120

5.4 The Okikiolu and Riesz Fractional Integral Operators 128

5.5 Fractional Integrals of Generalized Functions 130

5.5.1 Schwartz’s Spaces \mathcal{D}_l^p and $(\mathcal{D}_l^p)'$ 130

5.5.2 McBride Spaces, $F_{p,\mu}$ and $F'_{p,\mu}$ 132

5.5.3 Fractional Integrals and Fractional Derivatives on the Space D' 135

Chapter VI: Dual Series Equations Involving Generalized functions 137-154

6.1 Introduction 137

6.2 Dual Series Equations 137

6.3 Appearance of Dual Series Equations 138

6.4 Special Sets of Dual Series Equations 140

6.5 On Dual Laguerrre Series of Generalized Functions 145

6.5.1 Introduction 145

6.5.2 The Results Used in the Analysis 148

6.5.3 Problem (a) 150

6.5.4 Problem (b) 152

Bibliography 155-171