LIST OF FIGURES

1.1 Electrical conductivity of different materials in comparison with organic semiconductors ... 2
1.2 Molecular structure of Anthracene ... 6
1.3 Molecular Structure of Carbazole .. 7
1.4 Schematic diagram showing the oxidation-reduction process of PANI ... 8
1.5 Molecular structure of N-N′diphenyl 1-4 phenelenediamine 9
2.1 Schematic diagram of a vacuum coating unit 28
2.2 Schematic representation of the multiple beam interference method a) Fringe pattern b) Arrangement and c) Sample with step 32
2.3a Longitudinal structure thin film .. 35
2.3b Sandwiched structure thin film ... 35
3.1 Schematic diagram showing the formation of band structure in organic semiconductors from the overlapping of isolated p orbitals .. 40
3.2 Barrier lowering due to Image force in a Metal-Semiconductor contact ... 46
3.3 Schematic diagram showing various possible charge carrier transitions in a Metal-Semiconductor-Metal system 47
3.4 Variation of turn on voltage with the film thickness for Anthracene thin film ... 50
3.5a J-V characteristics of Anthracene thin film of thickness 1800Å 51
3.6a J-V characteristics of Anthracene thin film of thickness 3000Å 51
3.7a J-V characteristics of Anthracene thin film of thickness 4100Å 51
3.5b Plot of ln(J/V) versus 1000/T for Anthracene thin film of thickness 1800Å in the ohmic region .. 53
3.6b Plot of ln(J/V) versus 1000/T for Anthracene thin film of thickness 3000Å in the ohmic region ... 53
3.7b Plot of ln(J/V) versus 1000/T for Anthracene film of thickness 4100Å in the ohmic region ... 53
3.5c Plot of ln(J/V^2) versus 1000/T for Anthracene thin film of thickness 1800Å in the SCL region .. 53
3.6c Plot of ln(J/V²) versus 1000/T for Anthracene thin film of thickness 3000Å in the SCL region ...53
3.7c Plot of ln(J/V²) versus 1000/T for Anthracene thin film of thickness 4100Å in the SCL region ... 53
3.8a J-V characteristics of Carbazole thin film of thickness 1345Å 55
3.9a J-V characteristics of Carbazole thin film of thickness 1821Å 55
3.10a J-V characteristics of Carbazole thin film of thickness 2480Å 55
3.8b Plot of ln(J/V) versus 1000/T for Carbazole thin film of thickness 1821Å in the ohmic region..56
3.9b Plot of ln(J/V) versus 1000/T for Carbazole thin film of thickness 1345Å in the ohmic region..56
3.10b Plot of ln(J/V) versus 1000/T for Carbazole thin film of thickness 2480Å in the ohmic region..56
3.8c Plot of ln(J/V²) versus 1000/T for Carbazole thin film of thickness 1821Å in the SCL region..56
3.9c Plot of ln(J/V²) versus 1000/T for Carbazole thin film of thickness 1345Å in the SCL region..56
3.10c Plot of ln(J/V²) versus 1000/T for Carbazole thin film of thickness 2480Å in the SCL region..56
3.11 Variation of turn on voltage with the film thickness for Carbazole thin film...57
3.12a J-V characteristics of Anthracene film of thickness 2800Å annealed at 75°C for 30min...61
3.13a J-V characteristics of Anthracene film of thickness 2800Å annealed at 75°C for 60min...61
3.14a J-V characteristics of Anthracene film of thickness 2800Å annealed at 75°C for 90min...61
3.15a J-V characteristics of Anthracene film of thickness 2800Å annealed at 75°C for 120min...61
3.12b Plot of ln(J/V) versus 1000/T in the ohmic region for Anthracene film of thickness 2800Å annealed at 75°C for 30min.........................61
3.13b Plot of ln(J/V) versus 1000/T in the ohmic region for Anthracene film of thickness 2800Å annealed at 75°C for 60min.........................62
3.14b Plot of ln(J/V) versus 1000/T in the ohmic region for Anthracene film of thickness 2800Å annealed at 75°C for 90min.........................62
3.15b Plot of ln(J/V) versus 1000/T in the ohmic region for Anthracene film of thickness 2800Å annealed at 75°C for 120min.........................62
3.12c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Anthracene film of thickness 2800Å annealed at 75°C for 30min 61

3.13c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Anthracene film of thickness 2800Å annealed at 75°C for 60min 62

3.14c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Anthracene film of thickness 2800Å annealed at 75°C for 90min 62

3.15c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Anthracene film of thickness 2800Å annealed at 75°C for 120min 62

3.16a J-V characteristics of Carbazole thin film of thickness 2500Å annealed at 75°C for 30min..64

3.17a J-V characteristics of Carbazole thin film of thickness 2500Å annealed at 75°C for 60min..64

3.18a J-V characteristics of Carbazole thin film of thickness 2500Å annealed at 75°C for 90min..64

3.19a J-V characteristics of Carbazole thin film of thickness 2500Å annealed at 75°C for 120min ...64

3.16b Plot of $\ln(J/V)$ versus $1000/T$ in the ohmic region for Carbazole film of thickness 2500Å annealed at 75°C for 30min ..64

3.17b Plot of $\ln(J/V)$ versus $1000/T$ in the ohmic region for Carbazole film of thickness 2500Å annealed at 75°C for 60min.................................65

3.18b Plot of $\ln(J/V)$ versus $1000/T$ in the ohmic region for Carbazole film of thickness 2500Å annealed at 75°C for 90min.................................65

3.19b Plot of $\ln(J/V)$ versus $1000/T$ in the ohmic region for Carbazole film of thickness 2500Å annealed at 75°C for 120min ..65

3.16c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Carbazole film of thickness 2500Å annealed at 75°C for 30min ..64

3.17c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Carbazole film of thickness 2500Å annealed at 75°C for 60min ..65

3.18c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCL region for Carbazole film of thickness 2500Å annealed at 75°C for 90min ..65

3.19c Plot of $\ln(J/V^2)$ versus $1000/T$ in the SCLC region for Carbazole film of thickness 2500Å annealed at 75°C for 120min65

3.20a Plot of $\ln(J)$ versus $V^{1/2}$ at different temperatures for as-deposited Oligoaniline film of thickness 2950Å ..71

3.20b Plot of $\ln(J_0/T^2)$ versus $1000/T$ for as-deposited Oligoaniline film of thickness 2950Å ...71

3.21a Plot of $\ln(J)$ versus $V^{1/2}$ at different temperatures for as-deposited Oligoaniline film of thickness 3650Å ..72
3.21b Plot of ln(J_0/T^2) versus 1000/T for as-deposited Oligoaniline thin film of thickness 3650Å.................................72

3.22a Plot of ln(J) versus V^{1/2} at different temperatures for as-deposited Oligoaniline film of thickness 4690Å...............................73

3.22b Plot of ln(J_0/T^2) Versus 1000/T for as-deposited Oligoaniline film of thickness 4690Å ..73

3.23a Plot of ln(J) versus V^{1/2} at different temperatures for Oligoaniline film of thickness 2900Å annealed at 75°C for 30min...76

3.23b Plot of ln(J_0/T^2) versus 1000/T for Oligoaniline film of thickness 2900Å annealed at 75°C for 30min..76

3.24a Plot of ln(J) versus V^{1/2} at different temperatures for Oligoaniline film of thickness 2900Å annealed at 75°C for 60min..77

3.24b Plot of ln(J_0/T^2) versus 1000/T for Oligoaniline film of thickness 2900Å annealed at 75°C for 60min ...77

3.25a Plot of ln(J) versus V^{1/2} at different temperatures for Oligoaniline film of thickness 2900Å annealed at 75°C for 90min.................................78

3.25b Plot of ln(J_0/T^2) versus 1000/T for Oligoaniline film of thickness 2900Å annealed for 90min ...78

3.26a Plot of ln(J) versus V^{1/2} at different temperatures for Oligoaniline film of thickness 2900Å annealed for 120min79

3.26b Plot of ln(J_0/T^2) versus 1000/T for Oligoaniline film of thickness 2900Å annealed for 120min ...79

4.1 Variation of conductivity with 1000/T for as-deposited and annealed Anthracene thin films...96

4.2 Variation of conductivity with 1000/T for as-deposited and annealed Carbazole thin films...96

4.3 Variation of conductivity with 1000/T for as-deposited and annealed Oligoaniline thin films..96

4.4 Variation of conductivity with 100/(T)^{1/2} for as-deposited and annealed Anthracene thin films...99

4.5 Variation of conductivity with 100/(T)^{1/2} for as-deposited and annealed Carbazole thin films ..99

4.6 Variation of conductivity with 100/(T)^{1/2} for as-deposited and annealed Oligoaniline thin films...99

4.7 Frequency dependence of capacitance for Anthracene thin films annealed for different periods of time..102

4.8 Frequency dependence of capacitance for Carbazole thin films annealed for different periods of time..102
4.9 Frequency dependence of capacitance for Oligoaniline thin films annealed for different periods of time 102
4.10 Variation of conductivity with frequency for as-deposited and annealed Anthracene thin film .. 104
4.11 Variation of conductivity with frequency for as-deposited and annealed Carbazole thin film ... 104
4.12 Variation of conductivity with frequency for as-deposited and annealed Oligoaniline thin film ... 104
4.13 Variation of dielectric constant as a function of frequency for Anthracene thin films annealed for different periods of time 106
4.14 Variation of dielectric constant as a function of frequency for Carbazole thin films annealed for different periods of time 106
4.15 Variation of dielectric constant as a function of frequency for Oligoaniline thin films annealed for different periods of time 106
4.16 Variation of dielectric constant as a function of annealing period for different films ... 107
4.17 Variation of tanδ as a function of frequency for as deposited and annealed Anthracene thin films .. 109
4.18 Variation of tanδ as a function of frequency for as deposited and annealed Carbazole thin films ... 109
4.19 Variation of tanδ as a function of frequency for as deposited and annealed Oligoaniline thin films .. 109
5.1 Schematic diagram showing the formation of molecular orbitals from atomic orbitals ... 117
5.2a Optical absorption spectrum of as deposited Anthracene thin film of thickness 2400Å ... 121
5.2b Plot of (αhν)² versus hν for as deposited Anthracene thin film of thickness 2400Å ... 122
5.3 Optical absorption spectrum along with reflection and optical constants for deposited Anthracene thin film of thickness 3200Å 123
5.4 X-ray diffractogram of as-deposited Anthracene film of thickness 5000Å ... 124
5.5a Optical absorption spectrum of Anthracene thin films of thickness 2400Å annealed at 75°C in air for different periods of time 126
5.5b Plot of (αhν)² versus hν for Anthracene thin film of thickness 2400Å annealed at 75°C in air for different periods of time 127
5.6a X-ray diffractogram of Anthracene thin film of thickness 5000Å annealed in air for 30min ... 128
5.6b X-ray diffractogram of Anthracene thin film of thickness 5000Å annealed in air for 60min ...128
5.6c X-ray diffractogram of Anthracene thin film of thickness 5000Å annealed in air for 90min ...129
5.6d X-ray diffractogram of Anthracene thin film of thickness 5000Å annealed in air for 120min ...129
5.7a SEM image of as-deposited Anthracene thin film ..131
5.7b SEM image of Anthracene thin film annealed for 60min at 750°C131
5.7c SEM image of Anthracene thin film annealed for 120min at 750°C131
5.8a Optical absorption spectrum of as-deposited Carbazole thin film of thickness 3000Å ...132
5.8b Plot of (αhν)² versus hν for as-deposited Carbazole film of thickness 3000Å ...133
5.9 Optical absorption spectrum along with reflection and optical constants for as-deposited Carbazole thin film of thickness 3200Å133
5.10 X-ray diffractogram of as-deposited Carbazole thin film of thickness 5000Å ...135
5.11a Optical absorption spectrum of Carbazole thin film of thickness 3000Å annealed in air for different periods of time136
5.11b Plot of (αhν)² versus hν for Carbazole thin film of thickness 3000Å annealed in air for different periods of time137
5.12a X-ray diffractogram of Carbazole thin film of thickness 5000Å annealed in air for 30min ..139
5.12b X-ray diffractogram of Carbazole thin film of thickness 5000Å annealed in air for 60min ...139
5.12c X-ray diffractogram of Carbazole thin film of thickness 5000Å annealed in air for 90min ...140
5.12d X-ray diffractogram of Carbazole thin film of thickness 5000Å annealed in air for 120min ...140
5.13a SEM image of as deposited Carbazole thin film ..141
5.13b SEM image of Carbazole thin film annealed at 750°C for 60min141
5.13c SEM image of Carbazole thin film annealed at 750°C for 120min141
5.14a Optical absorption spectrum of as-deposited Oligoaniline thin film of thickness 2400Å ...143
5.14b Plot of (αhν)² versus hν for as-deposited Oligoaniline thin film of thickness 2400Å ...143
5.15 Optical absorption spectrum along with the reflection spectrum and optical constants for as-deposited Oligoaniline thin films of thickness 3000Å .. 144
5.16 X ray diffractogram of as-deposited Oligoaniline thin film of thickness 5000 Å.. 145
5.17a Optical absorption spectrum of Oligoaniline thin films of thickness 2400Å annealed for different periods of time 148
5.17b Plot of $(\alpha h\nu)^2$ versus $h\nu$ for Oligoaniline thin film of thickness 2400Å annealed in air for different periods of time 149
5.18a X ray diffractogram of Oligoaniline thin film of thickness 5000 Å annealed in air for 30min ... 151
5.18b X ray diffractogram of Oligoaniline thin film of thickness 5000 Å annealed in air for 60min.. 151
5.18c X ray diffractogram of Oligoaniline thin film of thickness 5000 Å annealed in air for 90min.. 152
5.18d X ray diffractogram of Oligoaniline thin film of thickness 5000 Å annealed in air for 120min ... 152
5.19a SEM image of as deposited Oligoaniline thin film............................... 153
5.19b SEM image of Oligoaniline thin film annealed at 75°C for 60min 153
5.19c SEM image of Oligoaniline thin film annealed at 75°C for 120min .. 153
6.1 Formation of a Metal-Semiconductor junction, a-before contact, b-after contact ... 165
6.2 a) $\phi_M > \phi_s$, corresponds with an injection limited electron contact and an ohmic hole contact. (b) a neutral contact $\phi_M = \phi_s$ and (c) $\phi_M < \phi_s$, contact is injection limited for holes and ohmic for electrons .. 166
6.3 Photograph of thin film Schottky diodes fabricated in our laboratory ... 171
6.4 I-V characteristics of Au/Ac/Al thin film Schottky diode.................... 172
6.5 I-V characteristics of Au/Cz/Al thin film Schottky diode 173
6.6 I-V characteristics of Au/B3/Al thin film Schottky diode.................... 174
6.7 I-V characteristics of Au/Ac/Al thin film diode annealed for different periods of time .. 178
6.8 I-V characteristics of Au/Cz/Al thin film diode annealed for different periods of time .. 179
6.9 I-V characteristics of Au/B3/Al thin film diode annealed for different periods of time .. 180
6.10 I-V characteristics of Ag/Ac/Al thin film Schottky diode183
6.11 I-V characteristics of Ag/Cz/Al thin film Schottky diode......................183
6.12 I-V characteristics of Ag/B3/Al thin film Schottky diode183
6.13 I-V characteristics of Zn/Ac/Al thin film Schottky diode.....................184
6.14 I-V characteristics of Zn/Cz/Al thin film Schottky diode184
6.15 I-V characteristics of Zn/B3/Al thin film Schottky diode.....................184