List of Tables

Chapter 3 APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high trans-fat diet induced steatohepatitis model in C57BL/6 mice

Table 3.1 Effect of APD668 on biochemical parameters and body weight in HTF diet induced steatohepatitis model………………………………………………. 63
Table 3.2 Effect of APD668 on metabolic indices in HTF diet induced steatohepatitis model………………………………………………………………………………… 66

Chapter 4 Co-administration of APD668, a G protein-coupled receptor 119 agonist and Linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in mice fed on a high trans-fat diet

Table 4.1 Effect of APD668, linagliptin or their combination on body weight, liver to body weight (%), hepatic steatosis and fat pad weight in mice fed on high trans-fat diet…………………………………………………………………… 83

Chapter 5 Combination of APD668, a G protein-coupled receptor 119 agonist with Linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in a murine model of non-alcoholic steatohepatitis with diabetes

Table 5.1 Effect of APD668, linagliptin or their combination on biochemical parameters in mouse model of NASH with diabetes………………………… 99
Table 5.2 Liver histology evaluated by NAFLD activity scores (NAS) deriving from the degree of hepatic steatosis, lobular inflammation and hepatocyte ballooning……………………………………………………… 103

Chapter 6 Effect of APD668, a GPR119 agonist on the development of steatohepatitis in mice fed on methionine and choline deficient diet
Table 6.1 Effect of APD668 on body weight and liver weight in mice fed on MCD diet

Table 6.2 Effect of time-dependent activity of different regimens of APD668 (25 mg/kg) on biochemical parameters and hepatic steatosis in MCD diet fed mice

Table 6.3 Plasma concentrations of APD668 in fasted state in mice fed on MCD diet

Table 6.4 Effect of APD668, linagliptin and fenofibrate alone or in combination on biochemical parameters and hepatic steatosis in MCD diet fed mice