List of Figures

Chapter 1 Introduction
Figure 1.1 Full spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD)…… 3
Figure 1.2.4 Multiple Parallel Hit Theory……………………………………… 7

Chapter 2 Current Pharmacotherapies for NASH
Figure 2.3.3 Pharmacological actions of GPR119 agonist…………………… 19
Figure 2.3.6 Inhibitory effect of GPR119 agonist on hepatic steatosis……… 23

Chapter 3 APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high trans-fat diet induced steatohepatitis model in C57BL/6 mice
Figure 3.1 APD668 improves fat tolerance in mice…………………………… 49
Figure 3.2 APD668 treatment increases plasma active GLP-1, Total GIP and Total PYY levels in mice…………………………………………………………… 51-52
Figure 3.3 Effect of D-Ala²-GIP and exendin-4 on oral fat tolerance in mice… 53
Figure 3.4 Effect of APD668 and Linagliptin on oral fat tolerance in presence of GLP-1 receptor antagonist (Exendin-3) in mice…………………………… 54-55
Figure 3.5 GPR119 activation inhibits gastric emptying and control gastric emptying independent of GLP-1 receptor……………………………………… 56-57
Figure 3.6 Combination effects of APD668 with linagliptin on acute plasma active GLP-1 in response to oral fat load in mice………………………… 59
Figure 3.7 APD668 and linagliptin cooperatively improve fat tolerance in mice………………………………………………………………………………… 59
Figure 3.8 Effect of APD668, GSK1292263 and MBX2982 on oral fat tolerance test……………………………………………………………………… 60
Figure 3.9 Effect of APD668 on tyloapol induced hyperlipidemia in mice..... 61-62
Figure 3.10 Effect of APD668 on hepatic lipid accumulation in mice fed on HTF diet .......................... 64-65

Chapter 4 Co-administration of APD668, a G protein-coupled receptor 119 agonist and Linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in mice fed on a high trans-fat diet

Figure 4.1 Effect of APD668, linagliptin or their combination on plasma biochemical parameters in mice fed on high trans-fat diet ...................... 80-81

Figure 4.2 Combined effect of APD668 with linagliptin on plasma metabolic markers in HTF diet fed mice ................................................. 82

Figure 4.3 Effect of APD668, linagliptin or their combination on hepatic steatosis assessed by histopathology in mice fed on high trans-fat diet ....... 84

Chapter 5 Combination of APD668, a G protein-coupled receptor 119 agonist with Linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in a murine model of non-alcoholic steatohepatitis with diabetes

Figure 5.1 Effect of APD668, linagliptin or their combination on liver to body weight ratio and hepatic steatosis in mouse model of NASH with diabetes ........................................................................... 101

Figure 5.2 Effect of APD668, linagliptin or their combination on hepatic steatosis and NAS score assessed using histopathologic analysis in NASH mice ........................................................................... 102

Figure 5.3 Effect of APD668, linagliptin or their combination on hepatic TBARS, inflammatory cytokine (TNF-α) and fibrosis marker (Hydroxyproline) in NASH mice ........................................................................... 104

Chapter 6 Effect of APD668, a GPR119 agonist on the development of
steatohepatitis in mice fed on methionine and choline deficient diet

Figure 6.1 Effect of APD668 on plasma ALT and AST levels in mice fed on MCD diet…………………………………………………………………………… 121

Figure 6.2 Effect of APD668 on hepatic and plasma lipid levels in mice………. 122

Figure 6.3 Effect of APD668 on plasma ALT levels in mice………………….. 125