List of Figures

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>FIGURE CAPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Comparison of Nanometer sizes [10]</td>
<td>5</td>
</tr>
<tr>
<td>1-2(a)</td>
<td>Classification of nanomaterials dimensions, morphology, composition, uniformity and agglomeration state</td>
<td>7</td>
</tr>
<tr>
<td>1-2(b)</td>
<td>Classification based on the nanomaterial (discrete, surface and bulk structures)</td>
<td>7</td>
</tr>
<tr>
<td>1-3</td>
<td>2D hexagonal lattice of graphene in real space with basis a_1 and a_2</td>
<td>12</td>
</tr>
<tr>
<td>1-4</td>
<td>Proposed atomic model of graphite oxide</td>
<td>13</td>
</tr>
<tr>
<td>1-5</td>
<td>General outline of the various bottom-up approaches</td>
<td>14</td>
</tr>
<tr>
<td>1-6</td>
<td>Wet chemical synthesis or liquid phase synthesis of nanomaterials</td>
<td>15</td>
</tr>
<tr>
<td>1-7</td>
<td>The outline of sol-gel processing [28]</td>
<td>16</td>
</tr>
<tr>
<td>1-8(a-b)</td>
<td>Schematic of the major components of (a) Transmission electron microscope (TEM) and (b) Scanning electron microscope (SEM)</td>
<td>25</td>
</tr>
<tr>
<td>1-9</td>
<td>UV-Vis absorption spectra of CdS nanocrystallites of various sizes</td>
<td>29</td>
</tr>
<tr>
<td>1-10</td>
<td>Four-point probe applied to a thin, infinitely extended layer of thickness d and specific resistance ρ; the measure layer is isolated by a semi-insulating substrate.</td>
<td>32</td>
</tr>
<tr>
<td>1-11</td>
<td>Schematic of imaging ellipsometry</td>
<td>33</td>
</tr>
<tr>
<td>1-12</td>
<td>The current density-voltage J-V characteristics of the photovoltaic cell under illumination.</td>
<td>36</td>
</tr>
<tr>
<td>1-14</td>
<td>Application of nanoparticles in a nut shell. [82]</td>
<td>40</td>
</tr>
<tr>
<td>1-15</td>
<td>The conversion efficiency Vs time scales in PV industry</td>
<td>42</td>
</tr>
<tr>
<td>1-16</td>
<td>A schematic diagram of DSSC</td>
<td>43</td>
</tr>
<tr>
<td>1-17</td>
<td>Schematic of DSSC showing principles of operation</td>
<td>44</td>
</tr>
<tr>
<td>1-18(a)</td>
<td>The monochromatic wavelength dependence of photocurrent</td>
<td>45</td>
</tr>
<tr>
<td>1-18(b)</td>
<td>The photocurrent-voltage curve of a solar cell based on Ru-</td>
<td>45</td>
</tr>
</tbody>
</table>
bpy sensitiser N945 measured under AM 1.5 illumination (100 mWcm\(^{-2}\))

1-20 Donor-\(\pi\)-acceptor structure principle of an organic dye in DSSC with TiO\(_2\) photo-anodes [90]

1-21 General principle of a biosensor [98]

1-22 Schematic diagram of an antibody molecule and its two fragment [103]

1-23 IgG antibody configurations on a surface during a random coupling procedure [102]

1-24(a) Oriented antibody immobilization [102] (a) antibody binds to the F\(_c\) receptors on surface

1-24(b) (b) antibody is bound to a solid support through an oxidised carbohydrate moiety on its C\(_{\text{H2}}\) domain of the F\(_c\) fragment [102]

1-24(c) (c) monovalent F\(_{\text{ab}}\) fragment bound to insoluble support through a sulphhydryl group in the C-terminal region [102]

1-25 Concentration ranges measured by various types of biosensors and immunoassays [105]

1-26(a-d) Different forms of immunoassays. Immobilized molecules shown at left; the addition of analyte in the middle; resulting adlayer on the surface on the right in (a) Direct binding; (b) sandwich assay; (c) displacement assay; (d) replacement assay. [107]

2-1(a-c) Crystal structures of TiO\(_2\) (a) rutile (b) anatase (c) brookite.

2-2(a-c) Crystal structures for (a) monoclinic (b) tetragonal and (c) cubic Zirconia

2-3(a-b) Crystal structures of Zinc Oxide (a) Wurtzite (b) Zinc Blende.

2-4 Flow chart of Synthesis of ZrO\(_2\) nanoparticles

2-5 UV-Vis absorption spectra of ZrO\(_2\) nanoparticles

2-6 UV-Vis absorption spectra of Sb doped-TiO\(_2\) nanoparticles

2-7 UV-Vis absorption spectra of Sb doped-ZrO\(_2\) nanoparticles

2-8 UV-Vis absorption spectra of ZrO\(_2\)-TiO\(_2\) nanoparticles

2-9 UV-Vis absorption spectra of ZnO nanoparticles

2-10(a-e) X-ray diffraction pattern of (a) ZrO\(_2\) (b) Sb doped - ZrO\(_2\) (c)
ZrO$_2$ – TiO$_2$ binary oxide nanoparticles (d) T-ZrO$_2$ (JCPDS-80-0965) (e) M-ZrO$_2$ (JCPDS-37-1484)

2-11(a-c) X-ray diffraction pattern of (a) Sb doped-TiO$_2$ nanoparticles (b) Rutile TiO$_2$ (JCPDS-21-1276) (c) Anatase TiO$_2$ (JCPDS-21-1272)

2-12 SEM image of Sb doped - TiO$_2$ nanoparticles
2-13 SEM image of Sb doped - ZrO$_2$ nanoparticles
2-14 SEM image of ZrO$_2$ – TiO$_2$ nanoparticles
2-15 SEM images of ZnO nanoparticles
2-16 TEM images of Sb doped- TiO$_2$ nanoparticles
2-17 TEM images of Sb doped- ZrO$_2$ nanoparticles
2-18 Particle size analysis of Sb doped- TiO$_2$ nanoparticles
2-19 Particle size analysis of Sb doped- ZrO$_2$ nanoparticles
2-20 Particle size analysis of ZrO$_2$-TiO$_2$ nanoparticles
2-21 Particle size analysis of ZnO nanoparticles
3-1 Flow chart of the synthesis process
3-2(a) Exfoliation of graphene oxide under stirring
3-2(b) Under thermal treatment the material reduces to reduced graphene oxide
3-3 Experimental arrangement for the reduced graphene oxide synthesis
3-4 UV-Vis absorption spectra of reduced graphene oxide
3-5 FTIR spectra of reduced graphene oxide
3-6(a-d) (a): Illumination geometry in Ellipsometric measurement (b) Ellipsometric data recorded for the reduced graphene oxide film at a thickness of 50 nm (c) & (d) Optical properties of multilayered thermally reduced graphene oxide by imaging ellipsometry(inset shows the dispersion relation of refractive index of reduced graphene oxide layer)
3-7 Raman spectra of reduced graphene oxide
3-8 The SAED pattern of reduced graphene oxide
3-9 SEM images of the material after thermally treating and after drop casting it on glass cover slips
3-10 High magnification TEM images of the reduced graphene
AFM topography and height profile of reduced graphene oxide

XPS spectra of reduced graphene oxide synthesized by novel route

Deconvoluted spectra of C_{1s} of the reduced graphene oxide

GNS-CuNP synthesized

UV-Visible spectrum of (a) GNS

(b) GNS-CuNP nanocomposites

FTIR spectra of GNS-CuNP nanocomposites

SEM image of GNS-CuNP

HRTEM image of the GNS-CuNP nanocomposites

Atomic resolution TEM image of CuNP on graphene

3D-AFM images of GNS-CuNP

Height profile of GNS-CuNP

XPS spectrum of GNS and GNS-CuNP

Deconvoluted spectrum C_{1s} of GNS

Deconvoluted spectrum O_{1s} of GNS

Deconvoluted spectra of Cu$_{2p}$ of GNS-CuNP

Deconvoluted spectra of C_{1s} of GNS-CuNP

Deconvoluted spectra of O_{1s} of GNS-CuNP

Cyclic voltammograms of bare ITO, bare ITO/GNS, and bare ITO/GNS-CuNP in NaOH

Cyclic voltammograms of bare ITO, bare ITO/GNS, and bare ITO/GNS-CuNP in PBS buffer at pH 7

Molecular structure of (a) chlorophyll-a and (b) chlorophyll-b

Tropical weed – *Chromolaena odorata*

Separated components by column chromatography

Graphical representation of synthesis of ZrO$_2$-TiO$_2$ binary oxide nanoparticle and its use in dye sensitized solar cell

UV-Vis absorption spectra of (a) Chlorophyll Dye extracted from the leaves of *Chromolaena Odorata* (b) binary oxide ZrO$_2$-TiO$_2$ (c) Chlorophyll dye sensitized ZrO$_2$-TiO$_2$ binary oxide
5-6 FTIR spectra of ZrO$_2$-TiO$_2$ binary oxide

5-7 SEM images of the ZrO$_2$-TiO$_2$ thin film annealed at 480°C

5-8 J-V characteristics of the dye-sensitized solar cell

6-1(a-b) AFM image of (a) Reduced graphene oxide coated on Si Wafer (p-type) (b) IgG immobilized on the reduced graphene oxide surface

6-2(a-b) AFM image of (a) Graphene suspension coated on Si Wafer (p-type) and (b) Human IgG immobilized on graphene suspension.

6-3(a-b) 3D-AFM images of (a) GNS-CuNP on Si wafer (b) Human IgG immobilized on GNS-CuNP

6-4 Schematic of the fabrication of the electrode and immobilization study using the immunoflourescence assay

6-5(a-b) Fluorescence images of Human IgG-Anti-Human IgG-FITC on (a) plane glass side coated with BSA (control) (b) glass slide coated with Reduced graphene oxide

6-6(a-b) Fluorescence images of Human IgG-Anti-Human IgG-FITC on (a) plane glass side coated with BSA (control) (b) glass slide coated with graphene

6-7(a-b) Fluorescence images of Human IgG-Anti-Human IgG-FITC on (a) plane glass side coated with BSA (control) (b) glass slide coated with GNS-CuNP

6-8(a) Cyclic voltammograms of bare ITO, bare ITO/GNS, bare ITO/GNS-CuNP in NaOH

6-8(b) Cyclic voltammograms of bare ITO, bare ITO/GNS, bare ITO/GNS-CuNP in PBS buffer at pH 7

6-8(c) Cyclic voltammograms of ITO/GNS-CuNP/Human IgG in PBS buffer at pH 7 with different concentrations of Anti-human IgG at a scan rate 0.1 V/s.

6-8(d) Calibration curve of electrochemical immunosensor of ITO/GNS-CuNP/Human IgG in PBS buffer at pH 7