CONTENTS

Chapter 1
INTRODUCTION

1.1. What is cancer?
1.2. Types of cancer
1.3. Histology of cancer
1.4. Pathology of cancer
1.5. Biochemistry of cancer
1.6. Radiation effects on cancer
1.7. Treatment of cancer-Physical Approach
1.8. Treatment of cancer-Chemical Approach
1.9. Treatment of cancer-Surgical Approach
1.10. Survey of literature-on Pathological, Biochemical, Histological, Radiation aspects
1.11. Genesis of the present investigation

Chapter 2
THEORETICAL ASPECTS

2.1. Cancer – cellular oscillations
 2.1.1. Origins of cellular spin resonance (CSR)
 2.1.2. Electrical oscillation and contact inhibition of reproduction in cells
2.2. Theoretical models on cancer
2.3. Radiation Dose and Dosimetry
 2.3.1. Calorimeter
 2.3.2. Determination of absorbed dose using an absolute ion chamber
2.4. Target Theory
 2.4.1. Single target theory
 2.4.2. Multitarget single hit model
 2.4.3. Limitations of multitarget single hit theory
Chapter 3

MATERIAL AND METHODS

3.1. Stages of cancers selected
3.2. Collection of sample
3.3. Maintenance of the sample
3.4. Clinical parameters of blood and its constituents
 Principle, theory, description, working and measurements of
 3.4.1. Hemoglobin content
 3.4.2. ESR
 3.4.3. WBC counts
 3.4.4. RBC counts
 3.4.5. Platelet counts
3.5. pH of cancer blood and plasma
 3.5.1. Principle and theory
 3.5.2. Description
 3.5.3. Experimental
3.6. Size of Erythrocytes of cancer blood by Laser diffraction
 3.6.1. Principle and theory
 3.6.2. Description
 3.6.3. Experimental
 3.6.4. Formulae and calculations
3.7. Viscometric studies on cancer blood and its plasma
 3.7.1. Principle and theory
 3.7.2. Description
 3.7.3. Experimental
 3.7.4. Formulae and calculations
3.8. Refractive index of cancer blood and plasma
 3.8.1. Principle and theory
 3.8.2. Description
 3.8.3. Experimental
3.9. Electrical conductivity of cancer blood
 3.9.1. Principle and theory
 3.9.2. Description
 3.9.3. Experimental

3.10. Dielectrophoresis of erythrocytes of cancer blood
 3.10.1. Principle and theory
 3.10.2. Description
 3.10.3. Experimental
 3.10.4. Formulae and calculations

Chapter 4

RESULTS

Table 4.1.1. Data on Hemoglobin (Hb) content of Normal persons
Table 4.1.2. Data on RBC counts of Normal persons
Table 4.1.3. Data on WBC counts of Normal persons
Table 4.1.4. Data on Platelet counts of Normal persons
Table 4.1.5. Data on ESR values of Normal persons
Table 4.2. Data on size of erythrocytes (RBC) of Normal persons
Table 4.3.1. Data on Viscosity (\(\eta\)) of blood and plasma of Normal persons
Table 4.3.2. Data on Surface tension (\(T\)) of blood and plasma of Normal persons
Table 4.3.3. Data on Volume flow rate (\(Q\)) of blood and plasma of normal persons
Table 4.4. Data on Refractive index (\(\mu\)) of plasma of Normal persons
Table 4.5. Data on pH of blood and plasma of Normal persons
Table 4.6. Data on Electrical conductivity (\(\sigma\)) of blood and plasma of Normal persons
Table 4.7. Data on dielectrophoretic collection rate (DCR) and excess permittivity (K_e) of erythrocytes of Normal persons

Table 4.8.1. Data on Hemoglobin (Hb) content of cancer patients

Table 4.8.2. Data on RBC counts of cancer patients

Table 4.8.3. Data on WBC counts of cancer patients

Table 4.8.4. Data on Platelet counts of cancer patients

Table 4.8.5. Data on ESR values of cancer patients

Table 4.9. Data on size of erythrocytes (RBC) of cancer patients

Table 4.10.1. Data on Viscosity (η) of blood and plasma of cancer patients

Table 4.10.2. Data on Surface tension (T) of blood and plasma of cancer patients

Table 4.10.3. Data on Volume flow rate (Q) of blood and plasma of cancer patients

Table 4.11. Data on Refractive index (μ) of plasma of cancer patients

Table 4.12. Data on pH of Blood and Plasma of cancer patients

Table 4.13. Data on Electrical conductivity (σ) of Blood and Plasma of cancer patients

Table 4.14. Data on dielectrophoretic collection rate (DCR) and excess permittivity (K_e) of erythrocytes of Cancer patients

Table 4.15.1. Percentage variation in Hemoglobin content

Table 4.15.2. Percentage variation in RBC counts

Table 4.15.3. Percentage variation in WBC counts

Table 4.15.4. Percentage variation in Platelet counts

Table 4.15.5. Percentage variation in ESR values

Table 4.16. Percentage variation in size of erythrocytes (RBC) diameter

Table 4.17.1. Percentage variation in Viscosity of blood and plasma of cancer patients

Table 4.17.2. Percentage variation in Surface tension of blood and plasma of cancer patients
Table 4.17.3. Percentage variation in Volume flow rate of blood and plasma of cancer patients
Table 4.18. Percentage variation in Refractive index of plasma of cancer patients
Table 4.19. Percentage variation in pH of blood and plasma of cancer patients
Table 4.20. Percentage variation in Electrical conductivity of blood and plasma of cancer patients
Table 4.21. Percentage variation dielectrophoretic collection rate (DCR) and excess permittivity (K_e) of erythrocytes of Cancer patients

Chapter 5

DISCUSSION & CONCLUSIONS

Table 5.1. A comparison on clinical parameters
Table 5.2. A comparison on size of erythrocytes
Table 5.3. A comparison on Refractive index
Table 5.4. A comparison on viscometric parameters
Table 5.5. A comparison on Electrical conductivity (σ)
Table 5.6. A comparison on pH
Table 5.7. A comparison on dielectrophoretic parameters
Fig. 5.1. Bar graphs of clinical parameters
Fig. 5.2. Bar graphs of size of erythrocytes (RBC)
Fig. 5.3. Bar graphs of refractive index
Fig. 5.4. Bar graphs of viscometric parameters
Fig. 5.5. Bar graphs of electrical conductivity
Fig. 5.6. Bar graphs of pH
Fig. 5.7. Bar graphs of Dielectrophoretic parameters

REFERENCES

List of papers published/ accepted for publication in journals