TABLES

CHAPTER I
Table 1.1 Occupations posing health hazards in workers due to lead exposure.
Table 1.2 Different forms of lead poisoning.

CHAPTER III
Table 3.1 Bacterial isolates showing MTC >2 mM for lead.
Table 3.2 Biochemical characteristics of lead resistant bacterial isolates.
Table 3.4 Susceptibility of lead resistant isolates SJ2A and SJ11 against various antibiotics.
Table 3.5 Quantity and purity of isolated genomic DNA.

CHAPTER IV
Table 4.1 Major peak changes observed in FTIR spectra of P. vermicola strain SJ2A after lead exposure and the functional groups involved in metal binding.
Table 4.2 Major peak changes observed in A. xylosoxidans strain SJ11 following precipitation of lead and the functional groups involved.
Table 4.3 Phosphatase activity of A. xylosoxidans strain SJ11 with and without lead.

CHAPTER V
Table 5.1 Concentration of the protein extracted from lead resistant bacterial isolates.
Table 5.2 List of proteins induced in P. vermicola strain SJ2A on exposure to lead.
Table 5.3 List of proteins up-regulated in P. vermicola strain SJ2A on exposure to lead and the fold change in expression.
Table 5.4 List of proteins induced in A. xylosoxidans strain SJ11 on exposure to lead.
Table 5.5 List of proteins up-regulated in *A. xylosoxidans* strain SJ11 on exposure to lead and the fold change in expression.

CHAPTER VI

Table 6.1 Docking interactions of amino acid residues of BmtA with various metal ions.
FIGURES

CHAPTER I

Fig. 1.1 Illustration of lead exposure and its adverse effects on human health.

Fig. 1.2 Mechanisms of lead resistance employed by bacteria.

Fig. 1.3 Efflux systems found in bacteria to combat lead toxicity.

Fig. 1.4 pbr operon of *Cupriavidus metallidurans* CH34.

Fig. 1.5 Proteins encoded by the *pbr* operon.

Fig. 1.6 *pbr* genes in various bacteria.

Fig. 1.7 Mode of action for the *pbr* resistance determinants.

CHAPTER III

Fig. 3.1 Alterations in colony morphology of bacterial isolates on exposure to lead.

Fig. 3.2 Plasmid profile of lead resistant bacterial isolates.

Fig. 3.3 Mueller Hinton agar plates depicting antibiotic susceptibility of the lead resistant bacterial isolates, SJ2A and SJ11.

Fig. 3.4 Genomic DNA isolated from the lead resistant bacterial isolates.

Fig. 3.5 16S rRNA gene amplicon on 0.8% agarose gel.

Fig. 3.6 Phylogenetic tree showing relationship of the lead resistant bacterial isolate

\[Providencia vermicola \] strain SJ2A with other strains of *Providencia* sp. using neighbour-joining method.

Fig. 3.7 Phylogenetic tree showing relationship of the lead resistant bacterial isolate

\[Achromobacter xylosoxidans \] strain SJ11 with other strains of *Achromobacter* sp. using neighbour-joining method.
CHAPTER IV

Fig. 4.1 Growth behaviour of Providencia vermicola strain SJ2A in presence of varying concentrations (0 to 0.8 mM) of lead nitrate.

Fig. 4.2 Growth behaviour of Achromobacter xylosoxidans strain SJ11 in presence of varying concentrations (0 to 0.8 mM) of lead nitrate.

Fig. 4.3 Lead precipitation by A. xylosoxidans strain SJ11 in defined minimal medium.

Fig. 4.4 pbrR gene amplicon on 1% agarose gel.

Fig. 4.5 Scanning electron micrographs of cells of P. vermicola strain SJ2A.

Fig. 4.6 Electron dispersive X-ray spectrum of P. vermicola strain SJ2A cells exposed to 0.8 mM lead nitrate in minimal medium.

Fig. 4.7 Transmission electron micrographs of cells of P. vermicola strain SJ2A.

Fig. 4.8 X-ray diffractogram of P. vermicola strain SJ2A.

Fig. 4.9 IR spectra of P. vermicola strain SJ2A.

Fig. 4.10 Scanning electron micrographs of cells of A. xylosoxidans strain SJ11.

Fig. 4.11 Electron diffraction X-ray spectroscopic analysis.

Fig. 4.12 Transmission electron micrographs of cells of A. xylosoxidans strain SJ11.

Fig. 4.13 X-ray diffractogram of A. xylosoxidans strain SJ11.

Fig. 4.14 IR spectra of A. xylosoxidans strain SJ11.

CHAPTER V

Fig. 5.1 SDS-PAGE analysis representing the quality assessment of extracted protein.

Fig. 5.2 Illustration depicting the distribution of proteins identified in P. vermicola strain SJ2A exposed to lead.

Fig. 5.3 Induced proteins from P. vermicola strain SJ2A were classified based on their involvement in various biological processes.
Fig. 5.4 Up-regulated proteins from *P. vermicola* strain SJ2A were classified based on their involvement in various biological processes.

Fig. 5.5 Illustration depicting the distribution of proteins identified in *A. xylosoxidans* strain SJ11 exposed to lead.

Fig. 5.6 Induced proteins from *A. xylosoxidans* strain SJ11 were classified based on their involvement in various biological processes.

Fig. 5.7 Up-regulated proteins from *A. xylosoxidans* strain SJ11 were classified based on their involvement in various biological processes.

Fig. 5.8 Cell motility assay for *P. vermicola* strain SJ2A.

CHAPTER VI

Fig. 6.1 PCR amplification of *bmtA* gene using bacterial plasmid DNA.

Fig. 6.2 Evolutionary relationship of Bmts and Smts from bacteria and cyanobacteria using neighbour-joining method.

Fig. 6.3 Multiple sequence alignment of cyanobacterial and bacterial metallothioneins.

Fig. 6.4 Protein model of BmtA constructed using I-TASSER suite.

Fig. 6.5 Predicted secondary structure of BmtA constructed using I-TASSER server.

Fig. 6.6 Hydropathy plot for BmtA.

Fig. 6.7 Evaluation for Qmean and Gromos force fields of BmtA.

Fig. 6.8 Ramachandran plot depicting PROCHECK results for BmtA.

Fig. 6.9 Docking of BmtA with lead (Pb) ion.

Fig. 6.10 Docking of BmtA with zinc (Zn) ion.

Fig. 6.11 Docking of BmtA with copper (Cu) ion.

Fig. 6.12 Docking of BmtA with cadmium (Cd) ion.

Fig. 6.13 Docking of BmtA with cobalt (Co) ion.
Fig. 6.14 Docking of BmtA with nickel (Ni) ion.

Fig. 6.15 Docking of BmtA with calcium (Ca) ion.