LIST OF CONTENTS

Chapter-I Introduction
1.1 General Introduction
1.2 Environmental impacts of coal fired thermal power plants
1.3 Thermal power plant as source of trace elements
1.4 Metals in the soil environment
1.5 Need for speciation
 1.5.1 Single extraction schemes
 1.5.2 Sequential extraction procedures (SEPs)
1.6 Study Area
1.7 Objectives

Chapter-II Review of Literature
2.1 Overview
2.2 Soil profile and spatial distribution of metal concentrations
2.3 Geostatistical Analysis
2.4 Mineralogical characterization of soils and coal ashes
2.5 Metal transport and leaching of coal ashes
2.6 Trace elemental speciation
2.7 Sequential extraction procedures
2.8 Criticisms of selective extraction procedures
 2.8.1 Readsoption
 2.8.2 The lack of specificity of reagents
 2.8.3 Sample Pretreatment
2.9 Applications of sequential extraction procedures
2.10 Metal analysis in vegetation
2.11 Water quality and metal transport

Chapter-III Material and Methods
3.1 Soil sampling
 3.1.1 Sampling strategy
3.2 Sample processing
 3.2.1 Soil and coal ash
3.2.2 Vegetation

3.3 Physico-Chemical characterization of soil and coal ash (fly ash and bottom ash)

3.3.1 pH and Electrical conductivity

3.3.2 Total organic carbon (TOC) and Carbonate content

3.3.3 Particle size analysis of soil

3.4 Physico-chemical analysis of water

3.5 Heavy metal analysis

3.6 Speciation of trace elements

3.7 Single extraction procedure

3.7.1 Single extraction protocol

3.8 Sequential extraction procedure

3.8.1 modified-BCR sequential extraction procedure

3.8.2 Tessier’s sequential extraction procedure

3.9 Analytical technique for trace elements

Chapter-IV Results and Discussion 84-232

4.1 Physicochemical characterization soil and coal ashes

4.1.1 pH

4.1.1.1 Surface soil

4.1.1.2 Coal ashes (fly ash and bottom ash)

4.1.2 Electrical Conductivity (EC)

4.1.2.1 Surface soil

4.1.2.2 Coal ashes (fly ash and bottom ash)

4.1.3 Total organic carbon (TOC)

4.1.3.1 Surface Soil

4.1.3.2 Coal ashes (fly ash and bottom ash)

4.1.4 Carbonate Content

4.1.4.1 Surface Soil

4.1.4.2 Coal ashes (fly ash and bottom ash)

4.1.5 Particle size analysis (PSA) of soil

4.1.6 Physicochemical characteristics of sub surface soils

4.2 Heavy metals in soils
4.2.1 Heavy metals concentrations in surface soils
 4.2.1.1 Cadmium
 4.2.1.2 Chromium
 4.2.1.3 Copper
 4.2.1.4 Lead
 4.2.1.5 Nickel
 4.2.1.6 Zinc
4.2.2 Metal concentration in sub surface soils
4.3 Statistical associations in total elemental analysis
 4.3.1 Correlation coefficient in surface soils
 4.3.2 Principal component analysis in soil
4.4 Heavy metal concentrations in coal ashes (fly ash and bottom ash)
 4.4.1 Cadmium
 4.4.2 Chromium
 4.4.3 Copper
 4.4.4 Lead
 4.4.5 Nickel
 4.4.6 Zinc
4.5 Metal Speciation
 4.5.1 Single-Extraction (EDTA extraction) analysis
 4.5.1.1 EDTA Extraction in Soil
 4.5.1.2 EDTA Extraction in Coal Ash
 4.5.2 Correlation coefficient in single extraction
4.6 Sequential extraction analysis
 4.6.1 Modified-BCR sequential extraction techniques
 4.6.2 Tessier’s sequential extraction procedures
 4.6.3 Metal Recoveries
4.7 Chemical fractionation of heavy metals in solid matrices (Soils, Fly Ash and Bottom Ash) by modified-BCR scheme
 4.7.1 Cadmium Speciation
 4.7.1.1 Soils
 4.7.1.2 Fly ash and bottom ash
4.7.2 Chromium Speciation
 4.7.2.1 Soils
 4.7.2.2 Fly ash and bottom ash
4.7.3 Copper Speciation
 4.7.3.1 Soils
 4.7.3.2 Fly ash and bottom ash
4.7.4 Lead Speciation
 4.7.4.1 Soils
 4.7.4.2 Fly ash and bottom ash
4.7.5 Nickel Speciation
 4.7.5.1 Soils
 4.7.5.2 Fly ash and bottom ash
4.7.6 Zinc Speciation
 4.7.6.1 Soils
 4.7.6.2 Fly ash and bottom ash
4.7.7 Recovery of metals (modified-BCR scheme)
 4.7.7.1 Surface soil
 4.7.7.2 Coal ashes
4.8 Chemical fractionation of heavy metals in solid matrices (Soils, Fly Ash and Bottom Ash) by Tessier’s sequential extraction procedure
 4.8.1 Speciation of Cadmium
 4.8.1.1 Soils
 4.8.1.2 Fly ash and bottom ash
 4.8.2 Speciation of Chromium
 4.8.2.1 Soils
 4.8.2.2 Fly ash and bottom ash
 4.8.3 Speciation of Copper
 4.8.3.1 Soils
 4.8.3.2 Fly ash and bottom ash
 4.8.4 Speciation of Lead
 4.8.4.1 Soils
 4.8.4.2 Fly ash and bottom ash
4.8.5 Speciation of Nickel
 4.8.5.1 Soils
 4.8.5.2 Fly ash and bottom ash
4.8.6 Speciation of Zinc
 4.8.6.1 Soils
 4.8.6.2 Fly ash and bottom ash
4.9 Recovery of metals (%) (Tessier’s Scheme)
4.10 Comparison in trace elemental speciation between Tessier’s and modified-BCR scheme in soils, fly ash and bottom ash
 4.10.1 Comparison between both schemes in soils
 4.10.1.1 Cadmium
 4.10.1.2 Chromium
 4.10.1.3 Copper
 4.10.1.4 Lead
 4.10.1.5 Nickel
 4.10.1.6 Zinc
 4.10.2 Comparison between both schemes in fly ash and bottom ash
 4.10.2.1 Cadmium
 4.10.2.2 Chromium
 4.10.2.3 Copper
 4.10.2.4 Lead
 4.10.2.5 Nickel
 4.10.2.6 Zinc
4.11 Relative metal affinities in operationally defined solid phase fractions
 4.11.1 Soil Samples
 4.11.2 Coal Ash (fly ash and bottom ash) Samples
4.12 Heavy metals in vegetation
 4.12.1 Mustard Crop (Brassica)
 4.12.2 Wheat Crop (Triticum aestivum)
 4.12.3 Bioconcentration factor
 4.12.4 Translocation Factor
4.13 Ground water quality
4.13.1 Physicochemical characterization of ground water samples

4.13.1.1 pH
4.13.1.2 Electrical conductivity (EC) and Total dissolved solids (TDS)
4.13.1.3 Total Hardness (TH), Calcium (Ca\(^{2+}\)) and Magnesium (Mg\(^{2+}\))
4.13.1.4 Total Alkalinity (TA), Carbonate (CO\(_3^{2-}\)), and Bicarbonate (HCO\(_3^-\))
4.13.1.5 Chloride (Cl\(^-\))
4.13.1.6 Nitrate (NO\(_3^-\))
4.13.1.7 Phosphate (PO\(_4^{3-}\))
4.13.1.8 Fluoride (F\(^-\))

4.14 Total Heavy Metal Concentration in Water

4.14.1 Cadmium
4.14.2 Copper
4.14.3 Lead
4.14.4 Nickel
4.14.5 Zinc

4.15 Surface Water quality

Conclusions 233-240
References 241-299
Annexures I-II
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Findings of various studies on Indian thermal power plants</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Findings of various studies on thermal power plants outside India</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Some representative sequential extraction schemes cited in literature</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Application of SEP's at thermal power plant</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Applications of sequential extraction schemes to metal partitioning in different environmental matrices</td>
<td>54</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Metal studies in vegetation around thermal power plant reported in literature</td>
<td>61</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Methods of determination of various physico-chemical parameters for water, soil and coal ashes</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Physicochemical characterization and heavy metal concentration of surface soils (S) (n=20)</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Descriptive statistics for some physicochemical characteristics and comparison of average heavy metal concentrations in surface soils with Indian and EU standards (n = 20)</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Physicochemical characteristics and heavy metal concentrations in fly ash</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Physicochemical characteristics and heavy metal concentrations in bottom ash</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Heavy metal concentrations in soils around thermal power plants as reported in literature</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Correlation matrix between physicochemical characteristics and total elemental concentrations in surface soils (n=20)</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Total variance explained</td>
<td>108</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Rotated component matrix</td>
<td>108</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Heavy metal concentrations in fly ash from thermal power plants as reported in literature</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Heavy metal concentrations in bottom ash from thermal power plants as reported in literature</td>
<td>113</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Single extraction (0.05M EDTA) of heavy metals in surface soils</td>
<td>119</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.12</td>
<td>Single extraction (0.05M EDTA) of heavy metals in fly ash</td>
<td>122</td>
</tr>
<tr>
<td>4.13</td>
<td>Single extraction (0.05M EDTA) of heavy metals in bottom ash</td>
<td>123</td>
</tr>
<tr>
<td>4.14</td>
<td>Correlation coefficients between EDTA-extractable Cd and Cr with their “Total metal” content in surface soils (n = 20)</td>
<td>124</td>
</tr>
<tr>
<td>4.15a</td>
<td>Operationally defined chemical fractionation (%) of cadmium (Cd) in surface soils (modified-BCR scheme)</td>
<td>130</td>
</tr>
<tr>
<td>4.15b</td>
<td>Operationally defined chemical fractionation (%) of chromium (Cr) in surface soils (modified-BCR scheme)</td>
<td>134</td>
</tr>
<tr>
<td>4.16a</td>
<td>Operationally defined chemical fractionation (%) of cadmium (Cd) in coal ashes (modified-BCR scheme)</td>
<td>132</td>
</tr>
<tr>
<td>4.16b</td>
<td>Operationally defined chemical fractionation (%) of chromium (Cr) in coal ashes (modified-BCR scheme)</td>
<td>136</td>
</tr>
<tr>
<td>4.15c</td>
<td>Operationally defined chemical fractionation (%) of copper (Cu) in surface soils (modified-BCR scheme)</td>
<td>138</td>
</tr>
<tr>
<td>4.16c</td>
<td>Operationally defined chemical fractionation (%) of copper (Cu) in coal ashes (modified-BCR scheme)</td>
<td>140</td>
</tr>
<tr>
<td>4.15d</td>
<td>Operationally defined chemical fractionation (%) of lead (Pb) in surface soils (modified-BCR scheme)</td>
<td>142</td>
</tr>
<tr>
<td>4.16d</td>
<td>Operationally defined chemical fractionation (%) of lead (Pb) in coal ashes (modified-BCR scheme)</td>
<td>144</td>
</tr>
<tr>
<td>4.15e</td>
<td>Operationally defined chemical fractionation (%) of nickel (Ni) in surface soils (modified-BCR scheme)</td>
<td>146</td>
</tr>
<tr>
<td>4.16e</td>
<td>Operationally defined chemical fractionation (%) of nickel (Ni) in coal ashes (modified-BCR scheme)</td>
<td>148</td>
</tr>
<tr>
<td>4.15f</td>
<td>Operationally defined chemical fractionation (%) of zinc (Zn) in surface soils (modified-BCR scheme)</td>
<td>150</td>
</tr>
<tr>
<td>4.16f</td>
<td>Operationally Defined Chemical Fractionation (%) of Zinc (Zn) in coal ashes (modified-BCR scheme)</td>
<td>152</td>
</tr>
<tr>
<td>4.17a</td>
<td>Chemical fractionation (%) of cadmium (Cd) in surface soils (Tessier’s scheme)</td>
<td>158</td>
</tr>
<tr>
<td>4.18a</td>
<td>Chemical fractionation (%) of cadmium (Cd) in coal ashes (Tessier’s scheme)</td>
<td>160</td>
</tr>
<tr>
<td>4.17b</td>
<td>Chemical fractionation (%) of chromium (Cr) in surface soils (Tessier’s scheme)</td>
<td>162</td>
</tr>
</tbody>
</table>
Table 4.18b Chemical fractionation (%) of chromium (Cr) in coal ashes (Tessier’s scheme) ..164
Table 4.17c Chemical fractionation (%) of copper (Cu) in surface soils (Tessier’s scheme) ..166
Table 4.18c Chemical fractionation (%) of copper (Cu) in coal ashes (Tessier’s scheme) ..168
Table 4.17d Chemical fractionation (%) of lead (Pb) in surface soils (Tessier’s scheme) ..170
Table 4.18d Chemical fractionation (%) of lead (Pb) in coal ashes (Tessier’s scheme) ..172
Table 4.17e Chemical fractionation (%) of nickel (Ni) in surface soils (Tessier’s scheme) ..174
Table 4.18e Chemical fractionation (%) of nickel (Ni) in coal ashes (Tessier’s Scheme) ..176
Table 4.17f Chemical fractionation (%) of Zinc (Zn) in surface soils (Tessier’s scheme) ..179
Table 4.18f Chemical fractionation (%) of Zinc (Zn) in coal ashes (Tessier’s scheme) ..181
Table 4.19 Defined Equivalent fractions ..185
Table 4.20 Average metal mobility in each fraction by both schemes in surface soils ..192
Table 4.21 Mobility of metals (based on average values) by both schemes in fly ash and bottom ash ..195
Table 4.22 Chemical partitioning of metals in four operationally defined fractions in soils, fly ash and bottom ash as obtained by two sequential extraction procedures ..203
Table 4.23 Relative metal mobility in each fraction by both the sequential extraction procedures in soils, fly ash and bottom ash ..207
Table 4.24 Heavy metal concentrations in different parts of mustard and wheat crop ..122
Table 4.25 Bioconcentration factor (BCF) and translocation factor (TF) for the metals for the mustard and wheat crops ...217
Table 4.26 Water quality parameters ..225
Table 4.27 Correlations in water quality parameters (ground water) ..226
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Fuel wise world's primary energy consumption in 2016</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Fuel wise distribution of total installed capacity of power stations in India (Central Electricity Authority; as on 31.12.2017)</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Sources of heavy metals</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Effects of pollutant and nutrient ions in soil ecosystem (adapted from Naidu et al., 2001)</td>
<td>10</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Map of the study area</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Flow diagram of Tessier’s sequential extraction scheme</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Flow diagram of modified-BCR sequential extractions scheme</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Stainless steel soil sampler</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Soil sampling</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Collections of bottom ash and fly ash</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Processing of vegetation samples</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Standard Curve for Phosphate</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Standard curve for Nitrate</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>Standard curve for Fluoride</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 3.8</td>
<td>Digestion of soil samples</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 3.9</td>
<td>Digestion of fly ash samples</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 3.10</td>
<td>Digestion of bottom ash samples</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 3.11</td>
<td>Digestion of plant samples</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 3.12</td>
<td>Standard curve for Cadmium</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 3.13</td>
<td>Standard curve for Copper</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 3.14</td>
<td>Standard curve for Nickel</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 3.15</td>
<td>Standard curve for Lead</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 3.16</td>
<td>Standard curve for Zinc</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 3.17</td>
<td>Flame atomic absorption spectrometer</td>
<td>83</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>pH of surface and sub surface soils</td>
<td>90</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>pH of coal ashes</td>
<td>91</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Electrical conductivity (EC) of surface and sub surface soils</td>
<td>92</td>
</tr>
</tbody>
</table>
Fig. 4.4 Electrical conductivity (EC) of coal ashes ..92
Fig. 4.5 Total organic carbon (TOC) in surface and sub surface soils............................93
Fig. 4.6 Total organic carbon (TOC) in coal ashes ...94
Fig. 4.7 Carbonate content of surface and sub surface soils ...95
Fig. 4.8 Carbonate content of coal ashes ..96
Fig. 4.9 Particle size analysis (PSA) of surface soils ...96
Fig.4.10. Cadmium concentration in surface and sub surface soils98
Fig. 4.11 Chromium concentration in surface and sub surface soils99
Fig.4.12 Copper concentration in surface and sub surface soils100
Fig.4.13 Lead concentration in surface and sub surface soils ..100
Fig. 4.14 Nickel concentration in surface and sub surface soils101
Fig. 4.15 Zinc concentration in surface and sub surface soils ..102
Fig. 4.16 Scree plot ..107
Fig.4.17 Principal component analysis in two dimensional space showing loadings of first two principal components ...109
Fig. 4.18 Cadmium concentration in coal ashes ...110
Fig. 4.19 Chromium concentration in coal ashes ...110
Fig. 4.20 Copper concentration in coal ashes ...114
Fig. 4.21 Lead concentration in coal ashes ..115
Fig. 4.22 Nickel concentration in coal ashes ...115
Fig. 4.23 Zinc concentration in coal ashes ..116
Fig. 4.24 EDTA extraction (%) of heavy metals in surface soils120
Fig. 4.25 EDTA extraction (%) of heavy metals in fly ash ..122
Fig. 4.26 EDTA extraction (%) of heavy metals in bottom ash123
Fig.4.27a Chemical fractionation (%) of cadmium (Cd) in surface soils (modified-BCR scheme) ..131
Fig. 4.28a Average fractionation of cadmium (Cd) in surface soils (modified-BCR scheme) ..131
Fig.4.29a Chemical fractionation (%) of cadmium (Cd) in coal ashes (modified-BCR scheme) ...133
Fig. 4.30a Average fractionation of cadmium (Cd) in coal ashes (modified-BCR scheme) ..133
Fig.4.27b Chemical fractionation (%) of chromium (Cr) in surface soil (modified-BCR scheme) ... 135

Fig.4.28b Average chemical fractionation of chromium (Cr) in surface soils (modified-BCR scheme) .. 135

Fig.4.29b Chemical fractionation (%) of chromium (Cr) in coal ashes (modified-BCR scheme) .. 137

Fig.4.30b Average chemical fractionation of chromium (Cr) in coal ashes (modified-BCR scheme) .. 137

Fig.4.27c Chemical fractionation (%) of copper (Cu) in surface soils (modified-BCR scheme) .. 139

Fig.4.28c Average chemical fractionation of copper (Cu) in surface soils (modified-BCR scheme) .. 139

Fig.4.29c Chemical fractionation (%) of copper (Cu) in coal ashes (modified-BCR scheme) .. 141

Fig.4.30c Average chemical fractionation of copper (Cu) in coal ashes (modified-BCR scheme) .. 141

Fig.4.27d Chemical fractionation (%) of lead (Pb) in surface soils (modified-BCR scheme) .. 143

Fig.4.28d Average chemical fractionation of lead (Pb) in surface soils (modified-BCR scheme) .. 143

Fig.4.29d Chemical Fractionation (%) of lead (Pb) in coal ashes (modified-BCR scheme) .. 145

Fig.4.30d Average chemical fractionation of lead (Pb) in coal ashes (modified-BCR scheme) .. 145

Fig.4.27e Chemical fractionation (%) of nickel (Ni) in surface soils (modified-BCR scheme) .. 147

Fig.4.28e Average chemical fractionation of nickel (Ni) in surface soils (modified-BCR scheme) .. 147

Fig.4.29e Chemical Fractionation (%) of nickel (Ni) in coal ashes (modified-BCR scheme) .. 149

Fig.4.30e Average chemical fractionation of nickel (Ni) in coal ashes (modified-BCR scheme) .. 149

Fig.4.27f Chemical fractionation (%) of zinc (Zn) in surface soils (modified-BCR scheme) .. 151
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.28f</td>
<td>Average chemical fractionation of zinc (Zn) in surface soils (modified-BCR scheme)</td>
</tr>
<tr>
<td>Fig. 4.29f</td>
<td>Chemical Fractionation (%) of zinc (Zn) in coal ashes (modified-BCR scheme)</td>
</tr>
<tr>
<td>Fig. 4.30f</td>
<td>Average chemical fractionation of zinc (Zn) in coal ashes (modified-BCR scheme)</td>
</tr>
<tr>
<td>Fig. 4.31a</td>
<td>Chemical fractionation (%) of cadmium (Cd) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.32a</td>
<td>Average chemical fractionation of cadmium (Cd) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.33a</td>
<td>Chemical fractionation (%) of cadmium (Cd) in coal ashes (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.34a</td>
<td>Average chemical fractionation of cadmium (Cd) in coal ashes (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.31b</td>
<td>Chemical fractionation (%) of chromium (Cr) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.32b</td>
<td>Average chemical fractionation of chromium (Cr) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.33b</td>
<td>Chemical fractionation (%) of chromium (Cr) in coal ashes (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.34b</td>
<td>Average chemical fractionation of chromium (Cr) in coal ashes (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.31c</td>
<td>Chemical fractionation (%) of copper (Cu) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.32c</td>
<td>Average chemical fractionation of copper (Cu) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.33c</td>
<td>Chemical fractionation (%) of copper (Cu) in coal ashes (Tessier’s Scheme)</td>
</tr>
<tr>
<td>Fig. 4.34c</td>
<td>Average chemical fractionation of copper (Cu) in coal ashes (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.31d</td>
<td>Chemical fractionation (%) of lead (Pb) in surface soils (Tessier’s scheme)</td>
</tr>
<tr>
<td>Fig. 4.32d</td>
<td>Average chemical fractionation of lead (Pb) in surface soils (Tessier’s scheme)</td>
</tr>
</tbody>
</table>
Fig. 4.33d Chemical fractionation (%) of lead (Pb) in coal ashes (Tessier’s Scheme) ... 173
Fig. 4.34d Average chemical fractionation of lead (Pb) in coal ashes (Tessier’s scheme) ... 173
Fig.4.31e Chemical fractionation (%) of nickel (Ni) in surface soils (Tessier’s scheme) .. 175
Fig.4.32e Average chemical fractionation of nickel (Ni) in surface soils (Tessier’s scheme) ... 175
Fig. 4.33e Chemical fractionation (%) of nickel (Ni) in coal ashes (Tessier’s Scheme) .. 177
Fig. 4.34e Average chemical fractionation of nickel (Ni) in coal ashes (Tessier’s scheme) ... 177
Fig.4.31f Chemical fractionation (%) of zinc (Zn) in surface soils (Tessier’s scheme) .. 179
Fig.4.32f Average chemical fractionation of zinc (Zn) in surface soils (Tessier’s scheme) ... 180
Fig. 4.33f Chemical fractionation (%) of zinc (Zn) in coal ashes (Tessier’s scheme) .. 181
Fig. 4.34f Average chemical fractionation of zinc (Zn) in coal ashes (Tessier’s scheme) ... 182
Fig. 4.35a Comparison of Cd fractionation in four equivalent fractions by two operationally defined SEP’s in soils 187
Fig. 4.35b Comparison of Cr fractionation in four equivalent fractions by two operationally defined SEP’s in soils 187
Fig. 4.35c Comparison of Cu fractionation in four equivalent fractions by two operationally defined SEP’s in soils 188
Fig. 4.35d Comparison of Pb fractionation in four equivalent fractions by two operationally defined SEP’s in soils 189
Fig. 4.35e Comparison of Ni fractionation in four equivalent fractions by two operationally defined SEP’s in soils 189
Fig. 4.35f Comparison of Zn fractionation in four equivalent fractions by two operationally defined SEP’s in soils 190
Fig. 4.36a Comparison of Cd fractionation in four equivalent fractions by two operationally defined SEP’s in fly ash 193
Fig. 4.37a Comparison of Cd fractionation in four equivalent fractions by two operationally defined SEP’s in bottom ash.................................193
Fig. 4.36b Comparison of Cr fractionation in four equivalent fractions by two operationally defined SEP’s in fly ash.................................194
Fig. 4.37b Comparison of Cr fractionation in four equivalent fractions by two operationally defined SEP’s in bottom ash.................................194
Fig. 4.36c Comparison of Cu fractionation in four equivalent fractions by two operationally defined SEP’s in fly ash.................................196
Fig. 4.37c Comparison of Cu fractionation in four equivalent fractions by two operationally defined SEP’s in bottom ash.................................196
Fig. 4.36d Comparison of Pb fractionation in four equivalent fractions by two operationally defined SEP’s in fly ash.................................197
Fig. 4.37d Comparison of Pb fractionation in four equivalent fractions by two operationally defined SEP’s in bottom ash.................................197
Fig. 4.36e Comparison of Ni fractionation in four equivalent fractions by two operationally defined SEP’s in fly ash.................................198
Fig. 4.37e Comparison of Ni fractionation in four equivalent fractions by two operationally defined SEP’s in bottom ash.................................198
Fig. 4.36f Comparison of Zn fractionation in four equivalent fractions by two operationally defined SEP’s in fly ash.................................199
Fig. 4.37f Comparison of Zn fractionation in four equivalent fractions by two operationally defined SEP’s in bottom ash.................................200
Fig. 4.38a BCF and TF for Cd, Cr and Cu in wheat and mustard crops...............218
Fig. 4.38b BCF and TF for Pb, Ni and Zn in wheat and mustard crops...............219
Fig 4.39 Water quality parameters...222
Fig 4.40 Heavy metals in surface and ground water..231
UNITS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Units of Measure</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>centimeter</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>day</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>degree centigrade</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
<td></td>
</tr>
<tr>
<td>Mt</td>
<td>metric ton</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
<td></td>
</tr>
<tr>
<td>meq</td>
<td>milliequivalent</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
<td></td>
</tr>
<tr>
<td>mS</td>
<td>millisiemen</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
<td></td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>volume</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>weight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accumulation index</td>
</tr>
<tr>
<td>HOAc</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>AMD</td>
<td>Acid Mine Drainage</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>Ammonium nitrate</td>
</tr>
<tr>
<td>AA</td>
<td>Atomic Absorption</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectrometer</td>
</tr>
<tr>
<td>AES</td>
<td>Atomic Emission Spectroscopy</td>
</tr>
<tr>
<td>BaCl₂</td>
<td>Barium chloride</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>Boric acid</td>
</tr>
<tr>
<td>BA</td>
<td>Bottom Ash</td>
</tr>
</tbody>
</table>
Cd Cadmium
Ca Calcium
CaCl₂ Calcium chloride
CEA Central Electricity Authority
Cl⁻ Chloride
Cr Chromium
CCB Coal Combustion By-products
CCP Coal Combustion Product
CUB Coal Utilization By-products
Cu Copper
DTPA Diethylene triamine penta acetic acid
DS Disposal Site
DSF Disposal Site Field
DW Down wind
C₆daf dry ash free carbon concentration
EC Electrical conductivity
ESP Electrostatic Precipitator
EF Enrichment Factor
EPA Environmental Protection Agency
EDTA Ethylene diamine tetra acetic acid
EU European Union’s
FAS Ferrous ammonium sulphate
FFGD FGD Flue Gas Desulfurization
FBC Fluidized Bed Combustion
F Fluoride
FA Fly Ash
FFCW Fossil Fuel Combustion Wastes
I-geo Geo-accumulation index
MW Gram molecular weight
GW Ground Water
GNDTPP Guru Nanak Dev Thermal Power Plant
HMs Heavy Metals
HCl Hydrochloric acid
HF Hydrofluoric acid
NH₂OH·HCl Hydroxyl ammonium hydrochloride
ICP Inductively Coupled Plasma
ISO International Standards Organization
IUPAC International Union of Pure and Applied Chemistry
L/S liquid to solid ratio
Mg²⁺ Magnesium
MgCl₂ Magnesium Chloride
MCL Maximum contaminant level
M Molar
MSW Municipal Solid Waste
NETL National Energy Technology Laboratory
Ni Nickel
NO₃⁻ Nitrate
HNO₃ Nitric acid
NOₓ Nitrogen oxide
N Normality
PM Particulate matter
PSA Particle Size Analysis
HClO₄ Perchloric acid
PO₄³⁻ Phosphate
PTFE Poly tetra fluoro ethylene
PAH Polyaromatic Hydrocarbons
PE polyethylene
PTF Polytetrafluorene
KCL Potassium Chloride
PC Pulverized Coal combustion
Rpm Revolution per minute
SEM-EDX Scanning Electron Microscopy-Energy Dispersive X-ray micro analysis
SE Sequential Extraction
SEPs Sequential Extraction Procedures
NaOAc Sodium acetate
NaOH Sodium hydroxide
NaNO₃ Sodium nitrate
SM&T Standards, Measurements and Testing Program
SS Sub Surface
SOₓ Sulfur oxide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Surface</td>
</tr>
<tr>
<td>TA</td>
<td>Total Alkalinity</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solid</td>
</tr>
<tr>
<td>TH</td>
<td>Total Hardness</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>TCLP</td>
<td>Toxicity Characteristic Leaching Procedure</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USA</td>
<td>United states of America</td>
</tr>
<tr>
<td>UP</td>
<td>Up wind</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction analysis</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>