CHAPTER – 1
NANOTECHNOLOGY

1.1 Introduction 1
1.2 Applications 2
1.3 Nanofluids as heat transfer liquids 3

CHAPTER – 2
LITERATURE SURVEY

2.1 Introduction 5
2.2 Literature review on Properties of Nanofluids 6
2.3 Literature review on single phase heat transfer liquids 11
2.4 Literature on Laminar nanofluid heat transfer 12
2.5 Literature on turbulent nanofluid heat transfer 14
2.6 Literature on heat transfer with Insert 18
2.7 Scope of the present work 20
CHAPTER – 3

PREPARATION AND ESTIMATION OF NANOFUID PROPERTIES

3.1 Introduction 24
3.2 Estimation of nanoparticle Volume concentration 24
3.3 Nanofluid preparation using CuO nanoparticles 26
 3.3.1 By mixing of nano powder in the base liquid 27
 3.3.2 By acid treatment of base fluids 28
 3.3.3 By adding surfactants to the base fluid 28
3.4 Determination of CuO nanofluid Properties 31
 3.4.1 Density of CuO nanofluids 31
 3.4.2 Specific heat of CuO nanofluids 32
 3.4.3 Thermal conductivity CuO of nanofluids 34
 3.4.4 Thermal conductivity models 38
 3.4.5 Experimental set up for thermal conductivity Measurement 39
 3.4.6 Calibration and Operation 43
 3.4.7 Error estimation 43
3.5 Results and discussion 44
3.6 Viscosity measurement of CuO nanofluids 48
 3.6.1 Introduction 48
 3.6.2 Viscosity models 50
3.7 Experimental set up and procedure 51
3.8 Results and discussions 53
CHAPTER – 4

HEAT TRANSFER OF CuO NANOFLOUIDS IN A PLANE TUBE

4.1 Introduction 59
4.2 Heat transfer experimental set up and Procedure 61
4.3 Nanofluid heat transfer measurement 66
4.4 Nanofluid Friction factor estimation 68
4.5 Results and discussion 69
 4.5.1 Nusselt number of the base fluid and CuO nanofluids in plain tube 69
 4.5.2 CuO nanofluid Friction factor in plain tube 73

CHAPTER – 5

FORCED CONVECTION CuO NANOFLOUID HEAT TRANSFER WITH INSERTS

5.1 Introduction 79
5.2 Heat transfer experiments with twisted tape inserts 81
5.3 Heat transfer experiments with helical tape inserts 84
5.4 Results and discussions 86
 5.4.1 Nanofluid heat transfer with twisted tape inserts 86
 5.4.2 Nanofluid Friction factor with twisted tape inserts 90
 5.4.3 Nanofluid Heat transfer with helical tape inserts 94
 5.4.4 Nanofluid Friction factor with helical inserts 97
6.1 Summary of the present investigation
6.2 Scope for future work
REFERENCES
APPENDIX – I Reynolds number, Nusselt number and Prandtl number of the base fluid and CuO nanofluids with and without twisted tape inserts
APPENDIX – II Thermo physical Properties of water-Propylene glycol base fluids and CuO nanofluids at different temperature
Friction factor of water-Propylene glycol base fluid at different Reynolds numbers
APPENDIX – III Uncertainty analysis