List of Figures

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Classification of sensors by the energy transduced in them</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Electronic and electrochemical gas sensor technology. (A limited number of techniques and target gases for detection are given)</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Principle of a micro sensor or micro sensor system</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Effectiveness of a micro sensor or micro sensor system</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Gas chemisorption modification in reducing gas influences electrical conductivity</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Basic representation of a sensor system</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Ideal input-output relationship of sensors</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Characteristic response of an ideal sensor</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Input-Sensitivity relationship for ideal (solid-line) and real (dashed-line) sensor systems</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Basic components of a measurement system</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Functional block diagram of a measurement processing system</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Simple model (adsorption and desorption)</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Models for surface layer controlled gas sensing, showing two limiting cases; (a) continuous surface layer and (b) formation of a potential barrier (Schottky barrier) across the intergranular boundary</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Change in conductance of a semiconductor in presence of gas</td>
<td>61</td>
</tr>
</tbody>
</table>
Figure 2.10 Schematic diagram of charge carrier concentration in SnO$_2$ grains

Figure 2.11 Plot of $\beta \cos \theta$ against $\sin \theta$

Figure 2.12 Two-Point probe configuration

Figure 2.13 Two-Point probe measurement

Figure 2.14 Four-Point Collinear Probe Resistivity Configuration

Figure 2.15 Configuration for van der Pauw Measurements

Figure 2.16 Four-Point Measurement

Figure 3.1 Schematic diagram of spray pyrolysis system

Figure 3.2 Experimental set up of spray pyrolysis technique

Figure 3.3 Setup for Tolansky multiple beam interferometry

Figure 3.4 (a) Pattern of Fizeau fringes (b) Sample with step and match flat

Figure 3.5 Block diagram of Dektak 6M stylus Profiler

Figure 3.6 A schematic diagram of scanning electron microscopic arrangements

Figure 3.7 Schematic Diagram of FTIR Spectrophotometer

Figure 3.8 Four Terminal method for resistance measurement

Figure 3.9 Block diagram of conductivity measurement set up

Figure 3.10 Schematic diagram of sensing chamber

Figure 3.11 Sensitivity measurement set up

Photograph 4.1 Fresh substrate & Cs doped SnO$_2$ thin film

Figure 4.1 EDAX spectra of 4% Cs-SnO$_2$ at 280°C indicating the presence of Sn, O and Cs.

Figure 4.2 FTIR transmission spectrum of Cs doped SnO$_2$ films
Figure 4.3.a SEM - undoped SnO$_2$; Sub.temp:320°C; Sensitivity = 4%.

Figure 4.3.b SEM - 3 wt.% Cs:SnO$_2$; Sub.temp:280°C; Sensitivity = 84 %.

Figure 4.3.c SEM - 3 wt.% Cs:SnO$_2$; Sub.temp: 320°C; Sensitivity = 75 %.

Figure 4.3.d SEM - 3 wt.% Cs:SnO$_2$; Sub.temp: 360°C; Sensitivity = 18 %.

Figure 4.4 XRD spectra for Cs-doped SnO$_2$ films prepared at different substrate temperatures.

Figure 4.5 XRD spectra for Cs-doped SnO$_2$ films deposited at 320°C for different concentrations of Cs in SnO$_2$.

Figure 4.6.a Variation of texture coefficient for 1 wt.% Cs: SnO$_2$ at different deposition temperatures.

Figure 4.6.b Variation of texture coefficient for 2 wt.% Cs: SnO$_2$ at different deposition temperatures.

Figure 4.6.c Variation of texture coefficient for 3 wt.% Cs: SnO$_2$ at different deposition temperatures.

Figure 4.6.d Variation of texture coefficient for 4 wt.% Cs: SnO$_2$ at different deposition temperatures.

Figure 4.7 Variation of standard deviation with doping level at (a) 280°C (b) 320°C (c) 360°C

Figure 4.8 Variation of standard deviation with substrate temperature for (a) 1 wt.% Cs : SnO$_2$; (b) 2 wt.% Cs : SnO$_2$; (c) 3 wt.% Cs : SnO$_2$; (d) 4 wt.% Cs : SnO$_2$.

Figure 4.9.a Resistance vs. grain size; Cs doped SnO$_2$ for 3 wt.% doping at different temperatures.

Figure 4.9.b Sensitivity vs. grain size; Cs doped SnO$_2$ for 3 wt.% doping at different temperatures.

Figure 4.10.a Variation of Resistance with Response Time for Cs doped SnO$_2$ deposited at 280°C after exposure to LPG.

Figure 4.10.b Variation of Resistance with Response Time for Cs doped SnO$_2$ deposited at 320°C after exposure to LPG.

Figure 4.10.c Variation of Resistance with Response Time for Cs doped SnO$_2$ deposited at 360°C after exposure to LPG.
SnO$_2$ deposited at 360$^\circ$C after exposure to LPG.

Figure 4.11.a Caesium doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 280$^\circ$C, sensing temperature: 345$^\circ$C)

Figure 4.11.b Caesium doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 320$^\circ$C, sensing temperature: 345$^\circ$C)

Figure 4.11.c Caesium doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 360$^\circ$C, sensing temperature: 345$^\circ$C)

Figure 4.12 Initial Resistance (in vacuum) vs. Sensitivity; Cs:SnO$_2$ at 280$^\circ$C

Figure 4.13 Sensitivity vs. Operating temperature; Cs:SnO$_2$ at 320$^\circ$C

Figure 4.14 Cs:SnO$_2$: Sensitivity curves at different dopant concentration for different deposition temperatures : Sensing Temp: 345$^\circ$C.

Figure 4.15 Cs:SnO$_2$: Sensitivity vs. Deposition temperature for different concentration of dopants: Sensing Temperature-345$^\circ$C.

Figure 4.16 Ageing study: Caesium doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 280$^\circ$C, sensing temperature: 345$^\circ$C)

Figure 4.17 Ageing study: 2% Caesium doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 280$^\circ$C, sensing temperature: 345$^\circ$C)

Figure 4.18 Sensitivity vs. Operating temperature due to ageing; Cs:SnO$_2$ at 320$^\circ$C

Figure 4.19 Variation of Sensitivity of 2% Caesium doped SnO$_2$ deposited at 320$^\circ$C towards LPG after O$_2$ annealing at different temps.
Figure 4.20 Cs doped SnO2 samples deposited at 320°C

Figure 4.21 Caesium doped SnO2 samples - Sensitivity vs. oxygen annealing temperature (deposition temperature: 320°C, Sensing temp: 345°C).

Figure 4.22 1% Caesium doped SnO2 samples: (a) Resistance vs. oxygen annealing temperature (deposition temperature: 280°C, sensing temp: 345°C. (b) Sensitivity vs. oxygen annealing temperature (deposition temperature: 280°C, sensing temp: 345°C.

Figure 4.23 Caesium (3 wt.%) doped SnO2 samples: (a) Resistance vs. oxygen annealing Temperature (deposition temperature: 360°C, Sensing temp: 345°C (b) Sensitivity vs. oxygen annealing Temperature (deposition temperature: 360°C, Sensing temp: 345°C.

Figure 4.24 SEM before O2 annealing - 3% Cs:SnO2 ; Sub.temp:320ºC

Figure 4.25 SEM after O2 annealing - 3% Cs:SnO2 ; Sub.temp:320°C.

Figure 4.26 X-ray diffraction of 2% caesium doped SnO2 films deposited at 320°C (a) before annealing (b) after annealing at 365°C

Figure 4.27 X-ray diffraction of 4% caesium doped SnO2 films deposited at 360°C (a) before annealing (b) after annealing at 340, 365°C & 380°C.

Figure 4.28 Caesium doped SnO2 samples: CO2 Sensitivity vs. Time graph (deposition temperature: 280°C, sensing temperature: 360°C)

Figure 4.29 Caesium doped SnO2 samples: CO2 Sensitivity vs. Time graph (deposition temperature: 320°C, sensing temperature: 350°C)

Figure 4.30 Caesium doped SnO2 samples: CO2 Sensitivity vs. Time graph (deposition temperature: 360°C, sensing temperature: 360°C)

Figure 4.31 Caesium doped SnO2 samples: CO2 Sensitivity vs. deposition temperature, sensing temperature: 360°C

Figure 4.32 Caesium doped SnO2 samples: CO2 Sensitivity vs. concentration
of Cs, sensing temperature: 360°C)

Figure 4.33 CO₂ Sensitivity vs. Operating temperature for 2wt% Cs:SnO₂ at 280°C

Photograph 5.1 Cleaned substrate & Mn doped SnO₂ film on substrate

Figure 5.1 EDAX spectra of 2% Mn-SnO₂ at 320°C indicating the presence of Sn, O and Mn

Figure 5.2 FTIR spectrum of Mn doped SnO₂ films

Figure 5.3.a SEM of undoped SnO₂ at the substrate temperature 320°C; sensitivity-21%

Figure 5.3.b SEM of 1% Mn:SnO₂ at the substrate temperature 320°C; sensitivity-76%

Figure 5.3.c SEM of 2% Mn:SnO₂ at the substrate temperature 320°C; sensitivity - 83 %

Figure 5.3.d SEM of 3% Mn:SnO₂ at the substrate temperature 320°C; sensitivity-61%

Figure 5.3.e SEM of 4% Mn:SnO₂ at the substrate temperature 320°C; sensitivity-48%

Figure 5.4 XRD spectra of 2 wt.% Mn doped SnO₂ films at different substrate temperatures

Figure 5.5 XRD spectra of different concentrations of Mn doped SnO₂ films deposited at the substrate temperature 360°C

Figure 5.6.a Variation of texture coefficient for 1 wt% Mn : SnO₂ at different deposition temperatures.
Figure 5.6.b Variation of texture coefficient for 2 wt% Mn : SnO$_2$ at different deposition temperatures. 184

Figure 5.6.c Variation of texture coefficient for 3 wt% Mn : SnO$_2$ at different deposition temperatures 184

Figure 5.6.d Variation of texture coefficient for 4 wt% Mn: SnO$_2$ at different Deposition temperatures. 185

Figure 5.7.a Variation of standard deviation with doping level for Mn: SnO$_2$ deposited at 280°C (b) 320°C (c) 360°C 186

Figure 5.7.b Variation of standard deviation with substrate temperature for (a) 1% Mn : SnO$_2$ (b) 2% Mn : SnO$_2$ (c) 3% Mn : SnO$_2$ (d) 4% Mn : SnO$_2$ 187

Figure 5.8.a Variation of grain size with deposition temperature for 2 wt.% Mn doped SnO$_2$ films 190

Figure 5.8.b Variation of resistance with grain size for 2 wt.% Mn doped SnO$_2$ films 191

Figure 5.8.c Variation of sensitivity with grain size at different deposition temperatures for 2 wt.% Mn doped SnO$_2$ films 192

Figure 5.9.a Variation of Resistance with Response Time for Mn doped SnO$_2$ deposited at 280°C after exposure to LPG 194

Figure 5.9.b Variation of Resistance with Response Time for Mn doped SnO$_2$ deposited at 360°C after exposure to LPG 195

Figure 5.10.a Manganese doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 280°C, sensing temperature: 330°C) 196

Figure 5.10.b Manganese doped SnO$_2$ samples: Sensitivity vs.
Time graph (deposition temperature: 320°C, sensing temperature: 330°C) 197

Figure 5.10.c Manganese doped SnO$_2$ samples: Sensitivity vs. Time graph (deposition temperature: 360°C, sensing temperature: 330°C) 198

Figure 5.11 Initial Resistance (in vacuum) vs. Sensitivity; Mn:SnO$_2$ 199

Figure 5.12 Sensitivity vs. Operating Temperature; Mn doped SnO$_2$ samples 201

Figure 5.13 Mn:SnO$_2$: Sensitivity curves for different dopant concentrations at different deposition temperatures: Sensing Temperature-330°C 202

Figure 5.14 Mn:SnO$_2$: Sensitivity vs. Deposition temperature for different concentration of dopants: Sensing Temperature-330°C 204

Figure 5.15 Ageing study of Mn:SnO$_2$ deposited at 280°C-Sensitivity vs. Response time for different doping levels: Sensing Temperature-330°C 205

Figure 5.16 Sensitivity vs. Operating temperature due to aging; Mn:SnO$_2$ at 320°C 207

Figure 5.17 XRD spectra of 2 wt% Mn:SnO$_2$ deposited at 320°C (a) Before annealing (b) After annealing at 300°C (c) After annealing at 325°C (d) After annealing at 350°C 208

Figure 5.18 Texture Coefficient vs. Diffraction planes of 2 wt% Mn:SnO$_2$ deposited at 320°C before annealing and after annealing at 325°C 209

Figure 5.19 SEM of 2 wt% Mn:SnO$_2$ deposited at 320°C: (a) Before annealing (b) After annealing at 325°C 210

Figure 5.20 Mn:SnO$_2$: Grain size vs. Annealing temperature: Sensing Temperature-330°C. 211

Figure 5.21 Mn:SnO$_2$: Resistance vs. O$_2$ annealing temperature for Mn doped SnO$_2$ deposited at 320°C Sensing Temperature-330°C. 212
Figure 5.22 Mn:SnO$_2$-Sensitivity vs. O$_2$ annealing temperature for Mn doped SnO$_2$ deposited at 320°C Sensing Temperature-330°C. 213

Figure 5.23: Mn: SnO$_2$-Sensitivity vs. response time for different annealing temperatures: Sensing Temperature-330°C. 214

Figure 5.24 CO$_2$:sensitivity of Mn: SnO$_2$ deposited at 280°C; Sensitivity vs. Response time for different doping levels: Sensing Temperature-350°C. 216

Photograph 6.1 Cleaned substrate & La doped SnO$_2$ film on substrate 225

Figure 6.1 EDAX spectra of 2% La-SnO$_2$: at 360°C indicating the presence of Sn, O and La. 226

Figure 6.2 FTIR spectrum of La doped SnO$_2$: films 227

Figure 6.3 SEM of 1 wt.% La-SnO$_2$: deposited at 320°C (S=18%) 228

Figure 6.4 SEM of 1 wt.% La-SnO$_2$: deposited at 360°C (S=62.12%) 228

Figure 6.5 SEM of 2 wt.% La-SnO$_2$: deposited at 280°C (S=44%) 229

Figure 6.6 SEM of 3 wt.% La-SnO$_2$: deposited at 320°C (S=8%) 229

Figure 6.7 XRD spectra of 1 wt.% La doped SnO$_2$: films at different Temperatures 231

Figure 6.8 XRD spectra of different concentrations of La doped SnO$_2$: films deposited at the substrate temperature 360°C. 234

Figure 6.9 Texture coefficient vs. Deposition temperature for 1wt.% La: SnO$_2$: films 235

Figure 6.10 Texture coefficient vs. Doping level of La: SnO$_2$: films deposited at 360°C 236

Figure 6.11 Variation of standard deviation as a function of deposition temperature for 1wt.% La doped SnO$_2$: 237

Figure 6.12 Variation of standard deviation as a function of doping
concentration of La in SnO$_2$ at the deposit temperature 360°C.

Figure 6.13 Variation of grain size with deposition temperature for 2 wt.% La-SnO$_2$ at different deposition temperatures

Figure 6.14 Variation of resistance with grain size for 1 wt.% La-SnO$_2$ at different deposition temperatures

Figure 6.15 Variation of sensitivity with grain size for 1 wt.% La-SnO$_2$ at different deposition temperatures: sensing temperature 350°C

Figure 6.16 Variation of resistance with response time at the deposition temperature 360°C: sensing temperature 350°C

Figure 6.17 Variation of sensitivity with response time at the deposition temperature 280°C: sensing temperature 350°C

Figure 6.18 Variation of sensitivity with response time at the deposition temperature 320°C: sensing temperature 350°C

Figure 6.19 Variation of sensitivity with response time at the deposition temperature 360°C: sensing temperature 350°C

Figure 6.20 Variation of sensitivity with initial resistance at the deposition temperature 360°C: sensing temperature 350°C

Figure 6.21 Variation of sensitivity with operating temperature

Figure 6.22 Variation of sensitivity with doping level of La in SnO$_2$ films: sensing temperature 350°C

Figure 6.23 Variation of sensitivity with deposition temperature of La-doped SnO$_2$ films: sensing temperature 350°C

Figure 6.24 Ageing: Variation of sensitivity with response time for La-doped samples deposited at 360°C: sensing temperature 350°C

Figure 6.25 XRD patterns of the fresh and aged samples

Figure 6.26 Variation of sensitivity with annealing temperature
Figure 6.27 Annealing: Variation of sensitivity with response time for La-doped samples deposited at 360°C: sensing temp: 350°C

Figure 6.28 XRD patterns of La-doped samples deposited at 360°C before and after annealing

Figure 6.29 CO$_2$ sensitivity with response time for La doped samples deposited at 360°C: sensing temperature 370°C