TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XX</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1. Introduction 3

1.2. Types of data 4

1.2.1. Text Data 4

1.2.2. Audio Data 4

1.2.3. Video Data 5

1.2.4. Image Data 6

1.3. Significance of text data 6

1.3.1. Medical Records 6

1.3.2. Online Shopping 7

1.3.3. Wearable 7

1.3.4. Crime 7

1.3.5. Humanities 7

1.3.6. Governance 7

1.3.7. Business 8

1.4. Need to disseminate data 8

1.4.1. Judgment 9

1.4.2. Awareness 9

1.4.3. Response 9

1.4.4. Collaboration 9

1.5. Issues in Text data dissemination 10

1.5.1. Security Issue 10

1.5.1.1. Confidentiality 10

1.5.1.2. Integrity 11
3.2.3. Huffman Coding 58
3.2.4. Shannon Fano Algorithm 59
3.2.5. Arithmetic Coding 60
3.2.6. Adaptive Huffman Coding 60
3.2.7. Salient Features of Lossless Compression Algorithm 61
3.3. Study of Existing Symmetric Key Encryption Algorithm 62
 3.3.1. DES 62
 3.3.2. 3DES 64
 3.3.3. AES 65
 3.3.4. RC6 66
 3.3.5. RC2 68
 3.3.6. Salient Features of Symmetric Key Encryption Algorithm 68
 3.3.7. Limitation and Drawback of Symmetric Key Encryption Algorithm 69
3.4. Proposed Integrated approach for compression and encryption on Textual data 71
 3.4.1. The Proposed CHE Technique 72
 3.4.1.1. Huffman Code Generation 73
 3.4.1.2. Code Conversion of Condition Based Sequence 73
 3.4.1.3. Encoding 73
 3.4.2. Example of CHE Technique 74
 3.4.3. Dictionary Formation 76
 3.4.4. The Proposed CSE Technique 77
 3.4.4.1. Interchange Process 78
 3.4.4.2. Rotation Process 78
 3.4.4.3. Location Identification 79
 3.4.5. The Proposed CSD Technique 80
 3.4.6. The Proposed CHD Technique 80

4. RESULT AND DISCUSSION 85
 4.1. Comparison of Proposed Algorithm with Existing Compression Algorithms 87
 4.1.1. Comparison based on Compressed File Size 87
 4.1.2. Comparison based on Compression Ratio 89
 4.1.3. Comparison based on Compression Time 90
 4.1.4. Comparison based on Decompression Time 91
 4.2. Comparison of Proposed Algorithm with Existing Encryption Algorithms 93
 4.2.1. Comparison based on Encryption Time 93
 4.2.2. Comparison based on Decryption Time 94
 4.2.3. Comparison based on Cryptanalysis 95
 4.3. Comparison of Proposed Algorithm with Existing Compression and Encryption Algorithm based on Total Execution Time
4.4. Comparison of Proposed Algorithm with Existing Compression and Encryption Algorithm based on Total Memory Consumption

4.5. Performance Analysis of Proposed Algorithm

4.6. Effectiveness of Proposed Algorithm on Documents of Different Languages
 4.6.1. English Language
 4.6.1.1. Comparison based on Compression Time
 4.6.1.2. Comparison based on Decompression Time
 4.6.1.3. Comparison based on Compression Ratio
 4.6.1.4. Comparison based on Encryption Time
 4.6.1.5. Comparison based on Decryption Time
 4.6.1.6. Comparison based on Total Execution Time
 4.6.2. Japanese Language
 4.6.2.1. Comparison based on Compression Time
 4.6.2.2. Comparison based on Decompression Time
 4.6.2.3. Comparison based on Compression Ratio
 4.6.2.4. Comparison based on Encryption Time
 4.6.2.5. Comparison based on Decryption Time
 4.6.2.6. Comparison based on Total Execution Time
 4.6.3. Chinese Language
 4.6.3.1. Comparison based on Compression Time
 4.6.3.2. Comparison based on Decompression Time
 4.6.3.3. Comparison based on Compression Ratio
 4.6.3.4. Comparison based on Encryption Time
 4.6.3.5. Comparison based on Decryption Time
 4.6.3.6. Comparison based on Total Execution Time
 4.6.4. Korean Language
 4.6.4.1. Comparison based on Compression Time
 4.6.4.2. Comparison based on Decompression Time
 4.6.4.3. Comparison based on Compression Ratio
 4.6.4.4. Comparison based on Encryption Time
 4.6.4.5. Comparison based on Decryption Time
 4.6.4.6. Comparison based on Total Execution Time
 4.6.5. Russian Language
 4.6.5.1. Comparison based on Compression Time
 4.6.5.2. Comparison based on Decompression Time
 4.6.5.3. Comparison based on Compression Ratio
 4.6.5.4. Comparison based on Encryption Time
 4.6.5.5. Comparison based on Decryption Time
 4.6.5.6. Comparison based on Total Execution Time
4.7. Comparison of All Language Data Together
 4.7.1. Comparison based on Average Compression Time
 4.7.2. Comparison based on Average Decompression Time
 4.7.3. Comparison based on Average Compression Ratio
 4.7.4. Comparison based on Average Encryption Time
 4.7.5. Comparison based on Average Decryption Time
 4.7.6. Comparison based on Average Total Execution Time

5. CONCLUSION AND FUTURE SCOPE
 5.1. Conclusion
 5.2. Future Prospective

6. REFERENCES

7. PUBLICATIONS