DECLARATION

I, S. ASWIN KUMAR, M.Sc., Ph.D. Research Scholar, PG & Research Department of Zoology, Presidency College(Autonomous), Chennai – 600005, hereby declare that the thesis entitled “ECOFRIENDLY BIOREMEDIATION OF TEXTILE AZO DYSES BY TEXTILE EFUENT ACCLIMATIZED BACTERIAL STRAINS UNDER AEROBIC CONDITIONS” Submitted for the degree of Doctor of Philosophy is my original work and that it has not been previously submitted for the award of any other Degree or Diploma, Associateship, Fellowship or other titles in this or any other University or similar Institution of higher learning.

Signature of the candidate
ACKNOWLEDGEMENTS

With deep sense of gratitude, I thank my research guide Dr. V. Indra, Assistant Professor, Department of Zoology, Presidency College, Chennai, for giving me an opportunity to work under her efficient guidance, helpful criticisms, constant encouragement, and keen interest evinced throughout my work.

I offer my profound thanks to Dr. T. Pramanandha Perumal, Principal, Presidency College, Chennai- 05 for his kind motivation and encouragement.

I am very much thankful to Dr. N. Arunagirinathan (Co-Guide) Assistant professor Department of microbiology, Presidency College, Chennai for his constant encouragement, support and valuable suggestion throughout my study period.

I am thankful to Dr. R. Usha, Head of the Department, Presidency College, Chennai for her help and permitting to work in the laboratory and giving valuable suggestions for this work.

I place on record my sincere thanks to Dr. R. Ramanibai, Professor and Head, department of zoology, University of madras, Chennai 25 for her valuable suggestion in my work as a doctoral committee member.
I am thankful to Dr. K. Sivakumari, Dr. P. K. Kaleena, Dr. Abdul Rahim and Dr. B. Meena for their help and suggestion, and other Staff members from Department of Zoology, Presidency College, Chennai, for their help of giving valuable suggestions for this work.

I am thankful to Dr. S. Vijayanand, Assistant Professor, Department of Biotechnology, Thiruvalluvar University, Vellore. Dr. V. Hemapriya, Assistant professor, D.K.M College, Vellore and Dr. G. Muthu, Scientist (ICMR) Chennai, Dr. D.J. Mukesh Kumar Department of Botany (CAS) University of Madras, Chennai and Dr. M. Jothibasu for their help and suggestion.

I would like to thank Mr. S. Seetharaman, Ms. B. Ramya, Mr. M. Durairasu, Mrs. D. Sheela, Mrs. J. Saroja, Mrs. A. Daisy, Mrs. Lakshmiprabha, Mrs. S. Geetha, and Mrs. A. Jenifer all other Ph.D., Research Scholars, Department of Zoology, Presidency College, Chennai, for their immense help and untiring effort and support, without which this work would not have been completed.

I am much indebted to my family members who have been a constant source of encouragement, their kind words and moral support during the period of this study.

I thank the almighty for showering his blessings throughout this work and giving me the apt knowledge to complete this thesis successfully.

S.AswIN KUMAR
CONTENTS

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>LIST OF TABLES</td>
<td>i-ii</td>
</tr>
<tr>
<td>2.</td>
<td>LIST OF FIGURES</td>
<td>iii-iv</td>
</tr>
<tr>
<td>3.</td>
<td>LIST OF PLATES</td>
<td>vi</td>
</tr>
<tr>
<td>4.</td>
<td>LIST OF ABBREVIATIONS & SYMBOLS</td>
<td>vii-xii</td>
</tr>
<tr>
<td>5.</td>
<td>INTRODUCTION</td>
<td>1-16</td>
</tr>
<tr>
<td>6.</td>
<td>OBJECTIVE OF THE STUDY</td>
<td>17</td>
</tr>
<tr>
<td>7.</td>
<td>REVIEW OF LITERATURE</td>
<td>18-40</td>
</tr>
<tr>
<td>8.</td>
<td>CHAPTER – I</td>
<td>41-63</td>
</tr>
<tr>
<td>9.</td>
<td>CHAPTER – II</td>
<td>64-81</td>
</tr>
<tr>
<td>10.</td>
<td>CHAPTER – III</td>
<td>82-98</td>
</tr>
<tr>
<td>11.</td>
<td>SUMMARY</td>
<td>99-100</td>
</tr>
<tr>
<td>12.</td>
<td>CONCLUSION</td>
<td>101-103</td>
</tr>
<tr>
<td>13.</td>
<td>BIBLIOGRAPHY</td>
<td>104-133</td>
</tr>
<tr>
<td>14.</td>
<td>PUBLICATIONS</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1 Application categories of dyes (adapted from O’Neill et al., 1999)
Table 1.2 Various Physico-chemical Methods Employed for Wastewater Treatment (Vijayanand and Hemapriya, 2013)
Table 2.1 Major pollutant types in textile wastewater, chemical types and process of origin.
Table 2.2 Decolorization of Synthetic Dyes by Bacterial Consortium
Table 2.3 Dye Decolorization by Pure Cultures of Bacterial Isolates
Table 2.4 Dye Decolorization by Genetically Engineered Bacterial Cells
Table 2.5 Dye Decolorization by Genetically Engineered Bacterial Cells
Table 3.1 Physico-chemical characteristics of Textile Effluent Samples (TE1-TE3)
Table 3.2 Bacterial Strains Decolorizing Evan’s Blue isolated from textile effluents
Table 3.3 Morphological, Physiological and Biochemical Characteristics of E. coli strain AKIP-2
Table 3.4 Effect of Carbon Sources on Decolorization Efficiency of E. coli strain AKIP-2 and its Biomass
Table 3.5 Effect of Organic Nitrogen Sources on Decolorization Efficiency of E. coli strain AKIP-2 and its Biomass
Table 3.6 Effect of Inorganic Nitrogen Sources on Decolorization Efficiency of E. coli strain AKIP-2 and its Biomass
Table 3.7 Effect of Various Metal Ions on Decolorization Efficiency of E. coli strain AKIP-2 and its Biomass
Table 3.8 Phytotoxicity Study of Evan’s Blue and its Degradation Products on Sorghumvulgare Pers.
Table 3.9 Phytotoxicity Study of Evan’s Blue and its Degradation Products on Phaseolus mungo L.
Table 4.1 Bacterial Strains Decolorizing Malachite Green isolated from textile effluents
Table 4.2 Morphological, Physiological and Biochemical Characteristics of strain IAK-7
Table 4.3 Effect of carbon sources on Decolorization Efficiency of Chromohalobacter salexigens strain IAK-7 and its Biomass

Table 4.4 Effect of Organic Nitrogen Sources on Decolorization Efficiency of Chromohalobacter salexigens strain IAK-7 and its Biomass

Table 4.5 Effect of Inorganic Nitrogen Sources on Decolorization Efficiency of Chromohalobacter salexigens strain IAK-7 and its Biomass

Table 4.6 Effect of Metal ions on Decolorization Efficiency of Chromohalobacter salexigens strain IAK-7 and its Biomass

Table 4.7 Phytotoxicity Study of Malachite Greenand its Degradation Products on Sorghum vulgare Pers.

Table 4.8 Phytotoxicity Study of Malachite Green and its Degradation Products on Phaseolus mungo L.

Table 5.1 Bacterial Strains Decolorizing Metanil Orange isolated from textile effluents

Table 5.2 Morphological, Physiological and Biochemical Characteristics of strain PIA-5

Table 5.3 Effect of Carbon Sources on Decolorization Efficiency of Alkalibacillus sp. strain PIA-5 and its Biomass

Table 5.4 Effect of Organic Nitrogen Sources on Decolorization Efficiency of Alkalibacillus sp. strain PIA-5 and its Biomass

Table 5.5 Effect of Inorganic Nitrogen Sources on Decolorization Efficiency of Alkalibacillus sp. strain PIA-5 and its Biomass

Table 5.6 Effect of Various Metal Ions on Decolorization Efficiency of Alkalibacillus sp. strain PIA-5 and its Biomass

Table 5.7 Phytotoxicity Study of Metanil Orange and its Degradation Products on Sorghum vulgare Pers.

Table 5.8 Phytotoxicity Study of Metanil Orangeand its Degradation Products on Phaseolus mungo L.
LIST OF FIGURES

Fig. 1.3 Synthesis of Textile Azo dyes
Fig. 2.1 Structure diversity of some commonly used synthetic Dyes
Fig. 2.2 Reductive cleavage of the –N=N- bond
Fig. 2.3 Mechanisms of anaerobic azo dye reduction by bacteria
Fig. 2.4 Proposed catalytic cycle of laccase showing the mechanism for reduction and oxidation of the copper sites
Fig. 3.1 Sample area of textile industries dyeing unit effluent outlet area
Fig. 3.2 Chemical structure of evan’s Blue
Fig. 3.3 PCR Amplified 16 S r DNA Sequence of AKIP-2 Strain
Fig. 3.4 Neighbourhood Analysis and closest homology of AKIP-2 Strain
Fig. 3.5 Phylogenic Analysis of AKIP-2 Strain
Fig. 3.6 Effect of incubation Time on bacterial biomass of E. coli strain AKIP-2.
Fig. 3.7 Effect of incubation Time on decolorization of Evans Blue by E. coli strain AKIP-2
Fig. 3.8 Effect of Temperature on bacterial biomass of E. coli strain AKIP-2
Fig. 3.9 Effect of incubation Time on decolorization of Evans Blue by E. coli strain AKIP-2
Fig. 3.10 Effect of pH on bacterial biomass of E. coli strain AKIP-2
Fig. 3.11 Effect of pH on decolorization of Evans Blue by E. coli strain AKIP-2
Fig. 3.12 Effect of Dye concentration on bacterial biomass of E. coli strain AKIP-2
Fig. 3.13 Effect of Dye concentration on decolorization of Evans Blue by E.coli AKIP-2
Fig. 3.14 Effect of Agitation speed on bacterial biomass of E. coli strain AKIP-2
Fig. 3.15 Effect of Agitation speed on decolorization of Evans Blue by E.colis strain AKIP-2
Fig. 3.16 HPLC Chromatogram of Evan’s Blue (Control)
Fig. 3.17 HPLC Chromatogram of Decolorized Evan’s Blue (Test Sample)
Fig. 3.18 FT-IR analysis of the Evan’s Blue (control)
Fig. 3.19 FT-IR analysis of biodegraded Evan’s Blue sample (Test Sample)
Fig. 3.20 GC MS analysis of biodegraded Evan’s Blue sample (Test Sample)
Fig. 4.1 Chemical structure of Malachite Green
Fig. 4.2a 16 S r rRNA sequence of *Chromohalobacter salexigens* Strain IAK-7
Fig. 4.2b Hierarchy View of *Chromohalobacter salexigens* Strain IAK-7
Fig. 4.3 Phylogenic Tree of *Chromohalobacter salexigens* strain IAK-7
Fig. 4.4 Effect of Incubation Time on Decolorization of Malachite Green by IAK-7 strain
Fig. 4.5 Effect of incubation Time on decolorization of Malachite Green by IAK-7 strain
Fig. 4.6 Effect of Temperature on bacterial biomass of IAK-7 strain
Fig. 4.7 Effect of Temperature on decolorization of Malachite Green by IAK-7 strain
Fig. 4.8 Effect of pH on bacterial biomass of *Chromohalobacter sp.* IAK-7 strain
Fig. 4.9 Effect of pH on decolorization of Malachite Green by *Chromohalobacter sp.* IAK-7
Fig. 4.10 Effect of Dye Concentration on bacterial biomass of *Chromohalobacter sp.* IAK-7
Fig. 4.11 Effect of Dye Concentration on decolorization of Malachite Green by IAK-7
Fig. 4.12 Effect of Agitation on the biomass of *Chromohalobacter sp.* IAK-7
Fig. 4.13 Effect of Agitation on decolorization of Malachite Green by *Chromohalobacter sp.*
Fig. 4.14 HPLC Chromatogram of Malachite Green (Control)
Fig. 4.15 HPLC Chromatogram of Decolorized Malachite Green (Test)
Fig. 4.16 FT-IR analysis of the Malachite Green (control)
Fig. 4.17 FT-IR analysis of biodegraded Malachite Green sample (Test)
Fig. 4.18 GC-MS Chromatogram of decolorized Malachite Green
Fig. 5.2a 16 S r rDNA sequence of *Alkalibacillus* sp. Strain PIA-5
Fig. 5.2b Hierarchy View of *Alkalibacillus* sp. Strain PIA-5
Fig. 5.3 Neighborhood Analysis and closest homology of PIA-5 Strain.
Fig. 5.3 Phylogenic Tree of *Alkalibacillus* sp. Strain PIA-5
Fig. 5.4 Effect of incubation Time on bacterial biomass of *Alkalibacillus* sp. Strain PIA-5
Fig. 5.5 Effect of Time on decolorization of Metanil Orange by *Alkalibacillus* sp. PIA-5

Fig. 5.6 Effect of Temperature on bacterial biomass of *Alkalibacillus* sp. Strain PIA-5

Fig. 5.7 Effect of temperature on decolorization of Metanil Orange by PIA-5

Fig. 5.8 Effect of pH on bacterial biomass of *Alkalibacillus* sp. Strain PIA-5

Fig. 5.9 Effect of pH on decolorization of Metanil Orange by *Alkalibacillus* sp. PIA-5

Fig. 5.10 Effect of Dye concentration on bacterial biomass of *Alkalibacillus* sp. Strain PIA-5

Fig. 5.11 Effect of Dye concentration on decolorization of Metanil Orange by PIA-5

Fig. 5.12 Effect of Agitation Speed on bacterial biomass of *Alkalibacillus* sp. Strain PIA-5

Fig. 5.13 Effect of Agitation on decolorization of Metanil Orange by *Alkalibacillus* sp

Fig.5.14 HPLC Chromatogram of Metanil Orange (Control)

Fig.5.15 HPLC Chromatogram of Decolorized Metanil Orange (Test Sample)

Fig.5.16 FT-IR Spectra of Metanil Orange (Control)

Fig.5.17 FT-IR Spectra of Decolorized Metanil Orange (Test Sample)

Fig. 5.18 GC-MS Chromatogram of decolorized Metanil Orange
LIST OF PLATES

Plate 3.1 *Escherichia coli* strain AKIP-2 grown in Nutrient Agar plate
Plate 3.2 Decolorization of Evan’s Blue by *Escherichia coli* strain AKIP-2
Plate 4.1 *Chromohalobacter sp.* strain IAK-7 grown in Nutrient Agar plate
Plate 4.2 Decolorization of Malachite Green by *Chromohalobacter sp.* strain IAK-7
Plate 5.1 *Alkalibacillus* sp. Strain PIA-5 grown in Nutrient Agar plate
Plate 5.2 Decolorization of Metanil Orange by *Alkalibacillus* sp. Strain PIA-5
Plate 6.1 Plate 6.1 *Channa striata* (Murrel Fish)
Plate 6.1a Experimental control
Plate 6.2 Aquatic toxicity studies of Metanil Orange and its Degradation Products on *Channa striata* (Gill)
Plate 6.3 Aquatic toxicity studies of malachite green and its Degradation Products on *Channa striata* (Gill)
ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>Ammonium sulphate</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>µm</td>
<td>Micromolar</td>
</tr>
<tr>
<td>A₆₀₀</td>
<td>Absorbance 600</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>Silver Nitrate</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>Br</td>
<td>bacteriorhodopsin</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Units</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>DPX</td>
<td>Distyrene Plasticizer Xylene</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra Acetic acid</td>
</tr>
<tr>
<td>et al.,</td>
<td>And others</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transform Infra Red</td>
</tr>
<tr>
<td>G</td>
<td>Gram</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography –Mass Spectrophotometer</td>
</tr>
<tr>
<td>gl⁻¹</td>
<td>Gram per litre</td>
</tr>
<tr>
<td>hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Pressure Liquid Chromatography</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium Bromide</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
</tbody>
</table>
kDa : Kilo Dalton
KI : Potassium Iodide
Kl : Kilolitre
KNO₃ : Potassium nitrate
l : Litre
M : Molarity
Mg : Milligram
MgCl₂ : Magnesium chloride
min : Minutes
ml : Millilitre
mM : Millimolar
MnCl₂ : Manganese (II) chloride
-N=N- : Azo bond
NaCl : Sodium chloride
NCBI : National center for Biotechnology Information
NH₄Cl : Ammonium chloride
NH₄NO₃ : Ammonium nitrate
nm : Nanometer
OH : Hydroxyl group
PCMB : p-Chloro Mercury Benzoate
PCR : Polymerase Chain Reaction
pH : Hydrogen ion concentration
PL : Primary Lamellae
PMSF : Phenyl Methyl Sulfonyl Fluoride
ppm : Parts Per Million
RDP : Ribosomal Database Project
rpm : rotation per Minute
S.D. : Standard Deviation
SDS-PAGE : Sodium Dodecyl Sulphate-Poly Acrylamide
Sec : Seconds
SL : Secondary Lamellae
TE : Textile Effluent
U : Units
UV : Ultra Violet
UV-Vis : Ultra Violet-visible
V/v : volume per volume
W/v : Weight per volume
ZnO$_2$: Zinc oxide
ZnSO$_4$: Zinc sulphate
0 max : Absorption Maxima
CONTENTS

General Introduction
1.1 Hazards of water pollution
1.2 Pollution problems in textile industry
 1.2.1 Color
 1.2.2 Dissolved solids
 1.2.3 Toxic metals
 1.2.4 Residual chlorine
1.3 Other pollutants
1.4 Dyeing in ancient times
1.5 Dye classification
 1.5.1 Acid dyes
 1.5.2 Reactive dyes
 1.5.3 Metal complex dyes
 1.5.4 Direct dyes
 1.5.5 Basic dyes
 1.5.6 Mordant dyes
 1.5.7 Disperse dyes
 1.5.8 Pigment dyes
 1.5.9 Vat dyes
 1.5.10 Anionic dyes and ingrain dyes
 1.5.11 Sulphur dyes
 1.5.12 Solvent dyes
 1.5.13 Fluorescent brighteners
 1.5.14 Other dye classes

Objectives of the present study

Review of Literature
2.1 Dyes in Ancient and Medieval India
2.2 Production of Synthetic Dyes and their Applications
2.3 Textile Industry Effluents and their Environmental Hazards
 2.3.1 Characterization of Textile Wastewaters
 2.3.2 Ecological Aspects
 2.3.3 Toxicological Aspects
 2.3.4 Carcinogenicity of Textile Effluents
 2.3.5 Impact of Dyeing Factory Effluents on Plants
 2.3.6 Impact of Dyeing Factory Effluent on Fishes
2.4 Methods for Removal of Synthetic Dyes from Textile Effluent
 2.4.1 Physical Methods Employed In Wastewater Treatment
 a. Adsorption Process
 b. Irradiation Treatment
 c. Ion Exchange Technique
 2.4.2 Chemical Decolorization Methods
 a. Oxidation Process
 b. Ozonation Process
 c. Electrochemical Oxidation Processes
 2.4.3 Emerging Technologies in Wastewater Treatment
 a. Advanced Oxidation Processes
 b. Membrane Filtration
 c. Photocatalysis Method
 2.4.4 Microbiological Decomposition of Synthetic Dyes
 2.4.5 Sources of Microorganisms
2.5 Bioremediation of textile effluents by Bacterial strains
2.6 Isolation and Adaptation of Naturally Occurring Microorganisms
2.7 Decolorization of Synthetic Dyes by bacterial Consortium
2.8 Decolorization of Synthetic Dyes by Pure Cultures of Bacterial Strains
2.9 Dye Decolorization by Genetically Engineered Organisms
2.10 Microbiological Decolorization of Azo Dyes under various Conditions
 a. Azo Dye Decolorization under Anaerobic Conditions
 b. Azo Dye Decolorization under Anoxic Conditions
 c. Azo Dye Decolorization under Aerobic Conditions
2.11 Enzymes in wastewater treatment
 a. Lignin peroxidase (LiP, EC 1.11.1.14)
b. Manganese peroxidase (MnP, EC 1.11.1.13)
c. Laccases (EC 1.10.3.2)

2.12 Fish Toxicity
2.13 Bioaccumulation

Chapter-I: Ecofriendly Bioremediation of Evan’s Blue by Textile Effluent
Acclimatized Bacterial Strain, *Escherichia coli* AKIP-2

3.1 Introduction
3.2 Materials and Methods
3.3 Results
3.4 Discussion

Chapter-II: Ecofriendly Bioremediation of Malachite Green Textile Effluent
Acclimatized Bacterial Strain, *Chromohalobacter salexigens* IAK-7

4.1 Introduction
4.2 Materials and Methods
4.3 Results
4.4 Discussion

Chapter-III: Ecofriendly Bioremediation of Metanil Orange by Textile Effluent
Acclimatized Bacterial Strain, *Alkalibacillus* sp. Strain PIA-5

5.1 Introduction
5.2 Materials and Methods
5.3 Results
5.4 Discussion

Summary

Conclusion

Bibliography