List of Figures

Figure 1.1 Lagerstroemia speciosa Linn

Figure 1.2 Mangifera indica Linn

Figure 1.3. Cellular generation of reactive oxygen species and antioxidant defense system.

Figure 1.4 Insulin Production in the Human Pancreas.

Figure 3.1 HPTLC profile of Standard (+) Epicatechin.

Figure 3.2 HPTLC profile of Standard (+) Epicatechin.

Figure 3.3 HPTLC profile of Standard (-) catechin.

Figure 3.4 HPTLC profile of tannins of L. speciosa.

Figure 3.5 HPTLC profile of polyphenols of M. indica.

Figure 3.6 HPLC profile of polyphenols of L. speciosa.

Figure 3.7 IR Spectrum of compound (1)

Figure 3.8 1H NMR Spectrum of compound (1)

Figure 3.9 13C NMR Spectrum of compound (1)

Figure 3.10 2D-NMR Spectrum of compound (1)

Figure 3.11 IR Spectrum of compound (2)

Figure 3.12 Mass Spectrum of compound (2)

Figure 3.13 1H NMR Spectrum of compound (2)

Figure 3.14 13C NMR Spectrum of compound (2)

Figure 4.1. Effect of L. speciosa and M. indica extracts on Reducing Power method.

Figure 4.2. Effect of L. speciosa and M.indica on DPPH and Nitric oxide scavenging activity.

Figure 4.3. Effect of L. speciosa and M. indica extracts by FRAP assay.

Figure 4.4. Effect of anti-inflammatory activity of ethyl acetate and ethanol extracts of M. indica in carrageenan induced paw edema in mice.

Figure 4.5. Effect of anti-inflammatory activity of ethyl acetate and ethanol extracts of M. indica in formalin induced paw edema in mice.
Figure 4.6. Effect of L. speciosa and M. indica extracts on acetic acid induced writhings in mice.

Figure 5.2 Effect of ethyl acetate extract of L. speciosa and M. indica on serum creatinine in cisplatin-induced nephrotoxicity in rats.

Figure 5.3 Effect of Ethyl acetate extract of L. speciosa and M. indica on serum urea in cisplatin induced nephrotoxicity in mice.

Figure 5.5 Effect of ethanol extract of L. speciosa and M. indica on serum urea in cisplatin induced nephrotoxicity in mice.

Figure 5.6. Histopathology of kidney in cisplatin induced nephrotoxicity in mice

Figure 5.7. Effect of ethanol extract of L. speciosa and M. indica on serum creatinine levels in gentamicin induced nephrotoxicity in mice.

Figure 5.8 Effect of ethanol extract of L. speciosa and M. indica on serum urea levels in gentamicin induced nephrotoxicity in mice.

Figure 5.9. Effect of L. speciosa and M. indica on antioxidant levels in Carbon tetra chloride induced hepatotoxicity in rats.

Figure 5.10 Effect of ethanol extract of L. speciosa and M. indica on tissue malondialdehyde in rats with CCl₄ administration.

Figure 5.11 Histopathology of liver

Figure 6.1 FRAP assay of polyphenols and tannins from M. indica and L. speciosa.

Figure 6.2 Nitric oxide scavenging activity of polyphenols and tannins from M. indica and L. speciosa.

Figure 6.3 In vitro protective effects of polyphenols and tannins against H₂O₂ induced haemolysis of rat erythrocytes and lipid peroxidation on erythrocyte ghost membrane.

Figure 6.4. SDS-PAGE electrophoresis of RBC membrane showing protective effects of polyphenols and tannins against H₂O₂ induced oxidative damage on erythrocyte ghost membrane.

Figure 6.5 Electrophoretic pattern of pBluescript II SK (-) DNA after UV photolysis of H₂O₂ in the presence and absence of tannins and polyphenols

Figure 6.6. Effect of polyphenols and tannins on ethanol induced gastric injury

Figure 6.7. Effect of polyphenols and tannins on gastric mucosa nitrite concentration administered with ethanol.

Figure 6.8. Histopathology of the stomach tissue of ethanol induced gastric ulcer in rats.

Figure 6.9. Effect of tannins and polyphenols on doxorubicin induced changes
in serum urea in experimental rats

Figure 6.10. Effect of tannins and polyphenols on serum creatinine in doxorubicin induced cardiotoxicity in experimental rats

Figure 6.11 Histopathology of the heart tissue

Figure 7.1 Effects of Tannins and Polyphenols on Glucose tolerance in glucose loaded rats

Figure 7.2 Effect of tannins and polyphenols on serum glucose level in STZ induced diabetic rats

Figure 7.3 Effect on body weight by long-term treatment of Tannins and polyphenols in STZ induced diabetic rats

Figure 7.4 Graph showing the food intake and water intake of experimental group of animals with and without STZ induced diabetes

Figure 7.5 Effect of antioxidant levels on liver tissue in STZ induced animals

Figure 7.6 Effect of tannins and polyphenols on lipid peroxidation assay on liver tissue of STZ induced diabetic rats

Figure 7.7 Effect of tannins and polyphenols of L. speciosa and M. indica on serum creatinine in STZ induced diabetic rats

Figure 7.8 Effect of tannins and polyphenols of L. speciosa and M. indica on serum urea in STZ induced diabetic rats

Figure 7.9 Effect of Polyphenols and tannins on SOD, Catalase, GSH and GPx in STZ-induced Diabetes

Figure 7.10 Effect of polyphenols and tannins on Kidney lipid peroxidation in STZ-induced diabetic rats

Figure 7.11 Histopathology of kidney (long term diabetic study)

Figure 7.12 Histopathology of pancreatic islet (long term diabetic study)

Figure 7.13 Effect of long-term treatment with Polyphenols and Tannins on serum glucose level in STZ-induced diabetic rats fed with high fat diet

Figure 7.14 Effect on body weight by long-term treatment with Polyphenols and Tannins in high fat diet fed STZ-induced diabetic rats

Figure 7.15 Histopathology of liver (HFD fed diabetic study)

Figure 7.16 Histopathology of aorta
Figure 7.17 Effect of Polyphenols and tannins on MDA, carbonylated protein and GSH in high fat diet fed STZ induced rat eye lens

Figure 7.18 Histopathology of eye ball